Laurenctiu Maxim, Laurenctiu Puaunescu, Mihai Tibùar
{"title":"复射影超曲面的消失上同调与Betti界","authors":"Laurenctiu Maxim, Laurenctiu Puaunescu, Mihai Tibùar","doi":"10.5802/aif.3486","DOIUrl":null,"url":null,"abstract":"We employ the formalism of vanishing cycles and perverse sheaves to introduce and study the vanishing cohomology of complex projective hypersurfaces. As a consequence, we give upper bounds for the Betti numbers of projective hypersurfaces, generalizing those obtained by different methods by Dimca in the isolated singularities case, and by Siersma-Tibăr in the case of hypersurfaces with a $1$-dimensional singular locus. We also prove a supplement to the Lefschetz hyperplane theorem for hypersurfaces, which takes the dimension of the singular locus into account, and we use it to give a new proof of a result of Kato.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vanishing cohomology and Betti bounds for complex projective hypersurfaces\",\"authors\":\"Laurenctiu Maxim, Laurenctiu Puaunescu, Mihai Tibùar\",\"doi\":\"10.5802/aif.3486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ the formalism of vanishing cycles and perverse sheaves to introduce and study the vanishing cohomology of complex projective hypersurfaces. As a consequence, we give upper bounds for the Betti numbers of projective hypersurfaces, generalizing those obtained by different methods by Dimca in the isolated singularities case, and by Siersma-Tibăr in the case of hypersurfaces with a $1$-dimensional singular locus. We also prove a supplement to the Lefschetz hyperplane theorem for hypersurfaces, which takes the dimension of the singular locus into account, and we use it to give a new proof of a result of Kato.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vanishing cohomology and Betti bounds for complex projective hypersurfaces
We employ the formalism of vanishing cycles and perverse sheaves to introduce and study the vanishing cohomology of complex projective hypersurfaces. As a consequence, we give upper bounds for the Betti numbers of projective hypersurfaces, generalizing those obtained by different methods by Dimca in the isolated singularities case, and by Siersma-Tibăr in the case of hypersurfaces with a $1$-dimensional singular locus. We also prove a supplement to the Lefschetz hyperplane theorem for hypersurfaces, which takes the dimension of the singular locus into account, and we use it to give a new proof of a result of Kato.