机载热电转换系统中二氧化碳的传热研究

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Xuan-En Yang, Zhongwei Wang, Yao-bin Niu, Heyang Miao
{"title":"机载热电转换系统中二氧化碳的传热研究","authors":"Xuan-En Yang, Zhongwei Wang, Yao-bin Niu, Heyang Miao","doi":"10.2514/1.t6778","DOIUrl":null,"url":null,"abstract":"To design more effective heat exchange ducts for thermoelectric conversion systems on aircraft, the heat transfer process of a working fluid in a nonuniformly heated square duct was simulated in this study and the influence of the heated wall position was further investigated. Due to the effects of the two main vortex structures in the duct, the highest wall temperature was found in the upper-wall heating case. With increasing working pressure, the influence of the heated wall position on the heat transfer process also increased. When the working pressure was 30 MPa, the wall temperature trend exhibited significant differences in cases with different heated walls, and the maximum wall temperature difference along the duct could be up to 110 K. With an increasing inlet temperature, the influence of the heated wall position on the heat transfer process decreased. Meanwhile, for cases under different pressures (specifically from 8 to 30 MPa), if the inlet temperature was higher than the value at which [Formula: see text] was [Formula: see text], the influence of the heated wall position on the yield strength of the duct also decreased with an increasing inlet temperature.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Heat Transfer of Carbon Dioxide in Airborne Thermoelectric Conversion System\",\"authors\":\"Xuan-En Yang, Zhongwei Wang, Yao-bin Niu, Heyang Miao\",\"doi\":\"10.2514/1.t6778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To design more effective heat exchange ducts for thermoelectric conversion systems on aircraft, the heat transfer process of a working fluid in a nonuniformly heated square duct was simulated in this study and the influence of the heated wall position was further investigated. Due to the effects of the two main vortex structures in the duct, the highest wall temperature was found in the upper-wall heating case. With increasing working pressure, the influence of the heated wall position on the heat transfer process also increased. When the working pressure was 30 MPa, the wall temperature trend exhibited significant differences in cases with different heated walls, and the maximum wall temperature difference along the duct could be up to 110 K. With an increasing inlet temperature, the influence of the heated wall position on the heat transfer process decreased. Meanwhile, for cases under different pressures (specifically from 8 to 30 MPa), if the inlet temperature was higher than the value at which [Formula: see text] was [Formula: see text], the influence of the heated wall position on the yield strength of the duct also decreased with an increasing inlet temperature.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6778\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6778","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了设计更有效的飞机热电转换系统换热管道,本文模拟了工作流体在非均匀受热方形管道中的换热过程,并进一步研究了受热壁面位置的影响。由于管内两种主要涡结构的影响,上壁面加热工况的壁面温度最高。随着工作压力的增大,受热壁位置对传热过程的影响也增大。当工作压力为30 MPa时,不同受热壁面的壁面温度变化趋势差异显著,沿风管壁面温差最大可达110 K。随着进口温度的升高,受热壁面位置对传热过程的影响减小。同时,在不同压力下(特别是在8 ~ 30 MPa),当进口温度高于[公式:见文]时,加热壁面位置对风管屈服强度的影响也随着进口温度的升高而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Heat Transfer of Carbon Dioxide in Airborne Thermoelectric Conversion System
To design more effective heat exchange ducts for thermoelectric conversion systems on aircraft, the heat transfer process of a working fluid in a nonuniformly heated square duct was simulated in this study and the influence of the heated wall position was further investigated. Due to the effects of the two main vortex structures in the duct, the highest wall temperature was found in the upper-wall heating case. With increasing working pressure, the influence of the heated wall position on the heat transfer process also increased. When the working pressure was 30 MPa, the wall temperature trend exhibited significant differences in cases with different heated walls, and the maximum wall temperature difference along the duct could be up to 110 K. With an increasing inlet temperature, the influence of the heated wall position on the heat transfer process decreased. Meanwhile, for cases under different pressures (specifically from 8 to 30 MPa), if the inlet temperature was higher than the value at which [Formula: see text] was [Formula: see text], the influence of the heated wall position on the yield strength of the duct also decreased with an increasing inlet temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信