论算术Dijkgraaf–Witten理论

IF 1.2 3区 数学 Q1 MATHEMATICS
Hikaru Hirano, Junhyeong Kim, M. Morishita
{"title":"论算术Dijkgraaf–Witten理论","authors":"Hikaru Hirano, Junhyeong Kim, M. Morishita","doi":"10.4310/cntp.2023.v17.n1.a1","DOIUrl":null,"url":null,"abstract":"We present basic constructions and properties in arithmetic Chern-Simons theory with finite gauge group along the line of topological quantum field theory. For a finite set $S$ of finite primes of a number field $k$, we construct arithmetic analogues of the Chern-Simons 1-cocycle, the prequantization bundle for a surface and the Chern-Simons functional for a $3$-manifold. We then construct arithmetic analogues for $k$ and $S$ of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf-Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We show some basic and functorial properties of those arithmetic analogues. Finally we show decomposition and gluing formulas for arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-Witten partition functions.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On arithmetic Dijkgraaf–Witten theory\",\"authors\":\"Hikaru Hirano, Junhyeong Kim, M. Morishita\",\"doi\":\"10.4310/cntp.2023.v17.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present basic constructions and properties in arithmetic Chern-Simons theory with finite gauge group along the line of topological quantum field theory. For a finite set $S$ of finite primes of a number field $k$, we construct arithmetic analogues of the Chern-Simons 1-cocycle, the prequantization bundle for a surface and the Chern-Simons functional for a $3$-manifold. We then construct arithmetic analogues for $k$ and $S$ of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf-Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We show some basic and functorial properties of those arithmetic analogues. Finally we show decomposition and gluing formulas for arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-Witten partition functions.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2023.v17.n1.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们沿着拓扑量子场论的路线,给出了具有有限规范群的算术Chern-Simons理论的基本结构和性质。对于数域$k$的有限素数的有限集$S$,我们构造了Chern-Simons 1-共循环、曲面的预量子化丛和$3$-流形的Chern-Simons-泛函的算术类似物。然后,我们在(2+1)维Chern-Simons TQFT中构造量子Hilbert空间(共形块空间)的$k$和$S$以及Dijkgraaf Witten配分函数的算术类似物。我们给出了这些算术类似物的一些基本性质和函数性质。最后给出了算术Chern-Simons不变量和算术Dijkgraaf-Witten配分函数的分解和粘合公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On arithmetic Dijkgraaf–Witten theory
We present basic constructions and properties in arithmetic Chern-Simons theory with finite gauge group along the line of topological quantum field theory. For a finite set $S$ of finite primes of a number field $k$, we construct arithmetic analogues of the Chern-Simons 1-cocycle, the prequantization bundle for a surface and the Chern-Simons functional for a $3$-manifold. We then construct arithmetic analogues for $k$ and $S$ of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf-Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We show some basic and functorial properties of those arithmetic analogues. Finally we show decomposition and gluing formulas for arithmetic Chern-Simons invariants and arithmetic Dijkgraaf-Witten partition functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信