{"title":"作用于切片正则函数的超越算子","authors":"C. de Fabritiis","doi":"10.1515/conop-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to carry out an analysis of five trascendental operators acting on the space of slice regular functions, namely *-exponential, *-sine and *-cosine and their hyperbolic analogues. The first three of them were introduced by Colombo, Sabadini and Struppa and some features of *-exponential were investigated in a previous paper by Altavilla and the author. We show how exp*(f ), sin*(f ), cos*(f ), sinh*(f ) and cosh*(f ) can be written in terms of the real and the vector part of the function f and we examine the relation between cos* and cosh* when the domain Ω is product and when it is slice. In particular we prove that when Ω is slice, then cos*(f ) = cosh*(f * I) holds if and only if f is ℂI preserving, while in the case Ω is product there is a much larger family of slice regular functions for which the above relation holds.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"9 1","pages":"6 - 18"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcendental operators acting on slice regular functions\",\"authors\":\"C. de Fabritiis\",\"doi\":\"10.1515/conop-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to carry out an analysis of five trascendental operators acting on the space of slice regular functions, namely *-exponential, *-sine and *-cosine and their hyperbolic analogues. The first three of them were introduced by Colombo, Sabadini and Struppa and some features of *-exponential were investigated in a previous paper by Altavilla and the author. We show how exp*(f ), sin*(f ), cos*(f ), sinh*(f ) and cosh*(f ) can be written in terms of the real and the vector part of the function f and we examine the relation between cos* and cosh* when the domain Ω is product and when it is slice. In particular we prove that when Ω is slice, then cos*(f ) = cosh*(f * I) holds if and only if f is ℂI preserving, while in the case Ω is product there is a much larger family of slice regular functions for which the above relation holds.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"9 1\",\"pages\":\"6 - 18\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2022-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2022-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Transcendental operators acting on slice regular functions
Abstract The aim of this paper is to carry out an analysis of five trascendental operators acting on the space of slice regular functions, namely *-exponential, *-sine and *-cosine and their hyperbolic analogues. The first three of them were introduced by Colombo, Sabadini and Struppa and some features of *-exponential were investigated in a previous paper by Altavilla and the author. We show how exp*(f ), sin*(f ), cos*(f ), sinh*(f ) and cosh*(f ) can be written in terms of the real and the vector part of the function f and we examine the relation between cos* and cosh* when the domain Ω is product and when it is slice. In particular we prove that when Ω is slice, then cos*(f ) = cosh*(f * I) holds if and only if f is ℂI preserving, while in the case Ω is product there is a much larger family of slice regular functions for which the above relation holds.