基于Ornstein-Uhlenbeck过程的新冠肺炎大流行模拟研究

IF 1.1 Q2 MATHEMATICS, APPLIED
P. Nabati
{"title":"基于Ornstein-Uhlenbeck过程的新冠肺炎大流行模拟研究","authors":"P. Nabati","doi":"10.22034/CMDE.2021.43961.1864","DOIUrl":null,"url":null,"abstract":"‎‎The rapid spread of ‎coronavirus ‎disease‎ (‎COVID-19) ‎has‎‎‎ increased the attention to the mathematical modeling of spreading the disease in the ‎world.‎ ‎The behavior of spreading ‎is ‎not ‎deterministic‎ ‎in ‎the ‎last ‎year‎. The purpose of this paper is to presents a stochastic differential equation for modeling the data sets of the COVID-19 involving ‎infected‎, recovered, and death cases. ‎At ‎first, ‎the ‎time ‎series‎ of the covid-19 ‎is modeling with the Ornstein-Uhlenbeck process and then using the Ito lemma and Euler approximation the analytical and numerical simulations for ‎the stochastic ‎differential equation are ‎achieved.‎‎ Parameters estimation is done using the maximum ‎likelihood estimator. Finally, numerical simulations are performed using reported data by ‎the world health ‎organization‎ for case studies of Italy and Iran. The numerical simulations and root mean square error criteria confirm the ‎accuracy and ‎efficiency of the findings of the present ‎study.‎‎‎","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A simulation study of the COVID-19 pandemic based on the Ornstein-Uhlenbeck processes\",\"authors\":\"P. Nabati\",\"doi\":\"10.22034/CMDE.2021.43961.1864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎‎The rapid spread of ‎coronavirus ‎disease‎ (‎COVID-19) ‎has‎‎‎ increased the attention to the mathematical modeling of spreading the disease in the ‎world.‎ ‎The behavior of spreading ‎is ‎not ‎deterministic‎ ‎in ‎the ‎last ‎year‎. The purpose of this paper is to presents a stochastic differential equation for modeling the data sets of the COVID-19 involving ‎infected‎, recovered, and death cases. ‎At ‎first, ‎the ‎time ‎series‎ of the covid-19 ‎is modeling with the Ornstein-Uhlenbeck process and then using the Ito lemma and Euler approximation the analytical and numerical simulations for ‎the stochastic ‎differential equation are ‎achieved.‎‎ Parameters estimation is done using the maximum ‎likelihood estimator. Finally, numerical simulations are performed using reported data by ‎the world health ‎organization‎ for case studies of Italy and Iran. The numerical simulations and root mean square error criteria confirm the ‎accuracy and ‎efficiency of the findings of the present ‎study.‎‎‎\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.43961.1864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.43961.1864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

‎‎‎冠状病毒‎病‎ (‎新冠肺炎)‎有‎‎‎ 增加了对疾病在‎世界‎ ‎传播行为‎是‎不‎确定性的‎ ‎在里面‎这个‎最后的‎年‎. 本文的目的是提出一个随机微分方程,用于建模新冠肺炎的数据集,包括‎被感染的‎, 康复和死亡病例。‎在‎第一‎这个‎时间‎系列‎ 新冠肺炎‎使用Ornstein-Uhlenbeck过程建模,然后使用Ito引理和Euler近似对‎随机的‎微分方程是‎实现。‎‎ 参数估计使用最大值‎似然估计器。最后,使用以下报告的数据进行数值模拟:‎世界卫生‎组织‎ 意大利和伊朗的案例研究。数值模拟和均方根误差准则证实了‎准确性和‎当前调查结果的效率‎学习‎‎‎
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simulation study of the COVID-19 pandemic based on the Ornstein-Uhlenbeck processes
‎‎The rapid spread of ‎coronavirus ‎disease‎ (‎COVID-19) ‎has‎‎‎ increased the attention to the mathematical modeling of spreading the disease in the ‎world.‎ ‎The behavior of spreading ‎is ‎not ‎deterministic‎ ‎in ‎the ‎last ‎year‎. The purpose of this paper is to presents a stochastic differential equation for modeling the data sets of the COVID-19 involving ‎infected‎, recovered, and death cases. ‎At ‎first, ‎the ‎time ‎series‎ of the covid-19 ‎is modeling with the Ornstein-Uhlenbeck process and then using the Ito lemma and Euler approximation the analytical and numerical simulations for ‎the stochastic ‎differential equation are ‎achieved.‎‎ Parameters estimation is done using the maximum ‎likelihood estimator. Finally, numerical simulations are performed using reported data by ‎the world health ‎organization‎ for case studies of Italy and Iran. The numerical simulations and root mean square error criteria confirm the ‎accuracy and ‎efficiency of the findings of the present ‎study.‎‎‎
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信