具有三个边界顶点的测地线网

IF 1.3 1区 数学 Q1 MATHEMATICS
Fabian Parsch
{"title":"具有三个边界顶点的测地线网","authors":"Fabian Parsch","doi":"10.4310/jdg/1631124286","DOIUrl":null,"url":null,"abstract":"We prove that a geodesic net with three boundary (= unbalanced) vertices on a non-positively curved plane has at most one balanced vertex. We do not assume any a priori bound for the degrees of unbalanced vertices. The result seems to be new even in the Euclidean case. We demonstrate by examples that the result is not true for metrics of positive curvature on the plane, and that there are no immediate generalizations of this result for geodesic nets with four unbalanced vertices.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geodesic nets with three boundary vertices\",\"authors\":\"Fabian Parsch\",\"doi\":\"10.4310/jdg/1631124286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a geodesic net with three boundary (= unbalanced) vertices on a non-positively curved plane has at most one balanced vertex. We do not assume any a priori bound for the degrees of unbalanced vertices. The result seems to be new even in the Euclidean case. We demonstrate by examples that the result is not true for metrics of positive curvature on the plane, and that there are no immediate generalizations of this result for geodesic nets with four unbalanced vertices.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1631124286\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1631124286","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了在非正曲面上具有三个边界(=不平衡)顶点的测地线网至多有一个平衡顶点。我们不假设不平衡顶点的度有任何先验界。即使在欧几里得的情况下,这个结果似乎也是新的。我们通过例子证明,对于平面上正曲率的度量,这个结果是不成立的,并且对于具有四个不平衡顶点的测地线网,这个结果没有立即推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesic nets with three boundary vertices
We prove that a geodesic net with three boundary (= unbalanced) vertices on a non-positively curved plane has at most one balanced vertex. We do not assume any a priori bound for the degrees of unbalanced vertices. The result seems to be new even in the Euclidean case. We demonstrate by examples that the result is not true for metrics of positive curvature on the plane, and that there are no immediate generalizations of this result for geodesic nets with four unbalanced vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信