非负重尾数据的体尾自适应核密度估计

IF 0.8 Q3 STATISTICS & PROBABILITY
Y. Ziane, N. Zougab, S. Adjabi
{"title":"非负重尾数据的体尾自适应核密度估计","authors":"Y. Ziane, N. Zougab, S. Adjabi","doi":"10.1515/mcma-2021-2082","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the procedure for deriving variable bandwidth in univariate kernel density estimation for nonnegative heavy-tailed (HT) data. These procedures consider the Birnbaum–Saunders power-exponential (BS-PE) kernel estimator and the bayesian approach that treats the adaptive bandwidths. We adapt an algorithm that subdivides the HT data set into two regions, high density region (HDR) and low-density region (LDR), and we assign a bandwidth parameter for each region. They are derived by using a Monte Carlo Markov chain (MCMC) sampling algorithm. A series of simulation studies and real data are realized for evaluating the performance of a procedure proposed.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"57 - 69"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2021-2082","citationCount":"2","resultStr":"{\"title\":\"Body tail adaptive kernel density estimation for nonnegative heavy-tailed data\",\"authors\":\"Y. Ziane, N. Zougab, S. Adjabi\",\"doi\":\"10.1515/mcma-2021-2082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider the procedure for deriving variable bandwidth in univariate kernel density estimation for nonnegative heavy-tailed (HT) data. These procedures consider the Birnbaum–Saunders power-exponential (BS-PE) kernel estimator and the bayesian approach that treats the adaptive bandwidths. We adapt an algorithm that subdivides the HT data set into two regions, high density region (HDR) and low-density region (LDR), and we assign a bandwidth parameter for each region. They are derived by using a Monte Carlo Markov chain (MCMC) sampling algorithm. A series of simulation studies and real data are realized for evaluating the performance of a procedure proposed.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"27 1\",\"pages\":\"57 - 69\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mcma-2021-2082\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2021-2082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们考虑了非负重尾(HT)数据的单变量核密度估计中可变带宽的推导过程。这些过程考虑了Birnbaum–Saunders幂指数(BS-PE)核估计器和处理自适应带宽的贝叶斯方法。我们采用了一种算法,将HT数据集细分为两个区域,高密度区域(HDR)和低密度区域(LDR),并为每个区域分配带宽参数。它们是通过使用蒙特卡罗马尔可夫链(MCMC)采样算法导出的。实现了一系列模拟研究和实际数据,用于评估所提出程序的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Body tail adaptive kernel density estimation for nonnegative heavy-tailed data
Abstract In this paper, we consider the procedure for deriving variable bandwidth in univariate kernel density estimation for nonnegative heavy-tailed (HT) data. These procedures consider the Birnbaum–Saunders power-exponential (BS-PE) kernel estimator and the bayesian approach that treats the adaptive bandwidths. We adapt an algorithm that subdivides the HT data set into two regions, high density region (HDR) and low-density region (LDR), and we assign a bandwidth parameter for each region. They are derived by using a Monte Carlo Markov chain (MCMC) sampling algorithm. A series of simulation studies and real data are realized for evaluating the performance of a procedure proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信