向量值分数阶反应扩散方程的整体存在性

Pub Date : 2018-05-25 DOI:10.5565/PUBLMAT6522108
A. Besteiro, D. Rial
{"title":"向量值分数阶反应扩散方程的整体存在性","authors":"A. Besteiro, D. Rial","doi":"10.5565/PUBLMAT6522108","DOIUrl":null,"url":null,"abstract":"In this paper, we study the initial value problem for infinite dimensional fractional non-autonomous reaction-diffusion equations. Applying general time-splitting methods, we prove the existence of solutions globally defined in time using convex sets as invariant regions. We expose examples, where biological and pattern formation systems, under suitable assumptions, achieve global existence. We also analyze the asymptotic behavior of solutions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global existence for vector valued fractional reaction-diffusion equations\",\"authors\":\"A. Besteiro, D. Rial\",\"doi\":\"10.5565/PUBLMAT6522108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the initial value problem for infinite dimensional fractional non-autonomous reaction-diffusion equations. Applying general time-splitting methods, we prove the existence of solutions globally defined in time using convex sets as invariant regions. We expose examples, where biological and pattern formation systems, under suitable assumptions, achieve global existence. We also analyze the asymptotic behavior of solutions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/PUBLMAT6522108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6522108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了无穷维分数阶非自治反应扩散方程的初值问题。应用一般的时间分裂方法,我们证明了以凸集为不变区域的时间全局定义解的存在性。我们展示了生物和模式形成系统在适当的假设下实现全球存在的例子。我们还分析了解的渐近性态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global existence for vector valued fractional reaction-diffusion equations
In this paper, we study the initial value problem for infinite dimensional fractional non-autonomous reaction-diffusion equations. Applying general time-splitting methods, we prove the existence of solutions globally defined in time using convex sets as invariant regions. We expose examples, where biological and pattern formation systems, under suitable assumptions, achieve global existence. We also analyze the asymptotic behavior of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信