{"title":"相干解析空间族的性质准则","authors":"M. Toma","doi":"10.14231/AG-2020-015","DOIUrl":null,"url":null,"abstract":"We extend Langton's valuative criterion for families of coherent algebraic sheaves to a complex analytic set-up. As a consequence we derive a set of sufficient conditions for the compactness of a moduli space of semistable sheaves over a compact complex manifold. This applies also to some cases appearing in complex projective geometry not covered by previous results.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Properness criteria for families of coherent analytic spaces\",\"authors\":\"M. Toma\",\"doi\":\"10.14231/AG-2020-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend Langton's valuative criterion for families of coherent algebraic sheaves to a complex analytic set-up. As a consequence we derive a set of sufficient conditions for the compactness of a moduli space of semistable sheaves over a compact complex manifold. This applies also to some cases appearing in complex projective geometry not covered by previous results.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2020-015\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2020-015","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Properness criteria for families of coherent analytic spaces
We extend Langton's valuative criterion for families of coherent algebraic sheaves to a complex analytic set-up. As a consequence we derive a set of sufficient conditions for the compactness of a moduli space of semistable sheaves over a compact complex manifold. This applies also to some cases appearing in complex projective geometry not covered by previous results.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.