基于时间相关自举数据的covid - 19元启发式优化预测方法

IF 1 Q3 STATISTICS & PROBABILITY
L. Fenga, Carlo Del Castello
{"title":"基于时间相关自举数据的covid - 19元启发式优化预测方法","authors":"L. Fenga, Carlo Del Castello","doi":"10.1101/2020.04.02.20050153","DOIUrl":null,"url":null,"abstract":"A compounded method, exploiting the searching capabilities of an operation research algorithm and the power of bootstrap techniques, is presented. The resulting algorithm has been successfully tested to predict the turning point reached by the epidemic curve followed by the CoViD19 virus in Italy. Futures lines of research, which include the generalization of the method to a broad set of distribution, will be finally given.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"CoViD19 Meta heuristic optimization based forecast method on time dependent bootstrapped data\",\"authors\":\"L. Fenga, Carlo Del Castello\",\"doi\":\"10.1101/2020.04.02.20050153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compounded method, exploiting the searching capabilities of an operation research algorithm and the power of bootstrap techniques, is presented. The resulting algorithm has been successfully tested to predict the turning point reached by the epidemic curve followed by the CoViD19 virus in Italy. Futures lines of research, which include the generalization of the method to a broad set of distribution, will be finally given.\",\"PeriodicalId\":44760,\"journal\":{\"name\":\"Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.04.02.20050153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.04.02.20050153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种利用运筹学算法的搜索能力和自举技术的能力的复合方法。由此产生的算法已经成功测试,可以预测CoViD19病毒在意大利的流行曲线所达到的转折点。最后将给出未来的研究路线,包括将该方法推广到一组广泛的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoViD19 Meta heuristic optimization based forecast method on time dependent bootstrapped data
A compounded method, exploiting the searching capabilities of an operation research algorithm and the power of bootstrap techniques, is presented. The resulting algorithm has been successfully tested to predict the turning point reached by the epidemic curve followed by the CoViD19 virus in Italy. Futures lines of research, which include the generalization of the method to a broad set of distribution, will be finally given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信