秩划分函数与截断θ恒等式

IF 1 4区 数学 Q1 MATHEMATICS
M. Merca
{"title":"秩划分函数与截断θ恒等式","authors":"M. Merca","doi":"10.2298/AADM190401023M","DOIUrl":null,"url":null,"abstract":"In 1944, Freeman Dyson defined the concept of rank of an integer partition\n and introduced without definition the term of crank of an integer partition.\n A definition for the crank satisfying the properties hypothesized for it by\n Dyson was discovered in 1988 by G.E. Andrews and F.G. Garvan. In this\n paper, we introduce truncated forms for two theta identities involving the\n generating functions for partitions with non-negative rank and non-negative\n crank. As corollaries we derive new infinite families of linear inequalities\n for the partition function p(n). The number of Garden of Eden partitions are\n also considered in this context in order to provide other infinite families\n of linear inequalities for p(n).","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rank partition functions and truncated theta identities\",\"authors\":\"M. Merca\",\"doi\":\"10.2298/AADM190401023M\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1944, Freeman Dyson defined the concept of rank of an integer partition\\n and introduced without definition the term of crank of an integer partition.\\n A definition for the crank satisfying the properties hypothesized for it by\\n Dyson was discovered in 1988 by G.E. Andrews and F.G. Garvan. In this\\n paper, we introduce truncated forms for two theta identities involving the\\n generating functions for partitions with non-negative rank and non-negative\\n crank. As corollaries we derive new infinite families of linear inequalities\\n for the partition function p(n). The number of Garden of Eden partitions are\\n also considered in this context in order to provide other infinite families\\n of linear inequalities for p(n).\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/AADM190401023M\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/AADM190401023M","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

1944年,Freeman Dyson定义了整数分区的秩的概念,并引入了整数分区的曲柄这一没有定义的术语。1988年,安德鲁(G.E. Andrews)和加文(F.G. Garvan)发现了满足戴森假设的曲柄性质的定义。本文引入了涉及非负秩和非负曲柄分区生成函数的两个恒等式的截断形式。作为推论,我们为配分函数p(n)导出了新的无限族线性不等式。在这种情况下,为了提供p(n)的其他无限族线性不等式,伊甸园分区的数量也被考虑在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rank partition functions and truncated theta identities
In 1944, Freeman Dyson defined the concept of rank of an integer partition and introduced without definition the term of crank of an integer partition. A definition for the crank satisfying the properties hypothesized for it by Dyson was discovered in 1988 by G.E. Andrews and F.G. Garvan. In this paper, we introduce truncated forms for two theta identities involving the generating functions for partitions with non-negative rank and non-negative crank. As corollaries we derive new infinite families of linear inequalities for the partition function p(n). The number of Garden of Eden partitions are also considered in this context in order to provide other infinite families of linear inequalities for p(n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信