奇异Φ-拉普拉斯问题两个解的存在性

IF 2.1 2区 数学 Q1 MATHEMATICS
P. Candito, U. Guarnotta, R. Livrea
{"title":"奇异Φ-拉普拉斯问题两个解的存在性","authors":"P. Candito, U. Guarnotta, R. Livrea","doi":"10.1515/ans-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract Existence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by the Φ \\Phi -Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. Global C 1 , τ {C}^{1,\\tau } regularity of solutions is also investigated, chiefly via a priori estimates and perturbation techniques.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"659 - 683"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Existence of two solutions for singular Φ-Laplacian problems\",\"authors\":\"P. Candito, U. Guarnotta, R. Livrea\",\"doi\":\"10.1515/ans-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Existence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by the Φ \\\\Phi -Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. Global C 1 , τ {C}^{1,\\\\tau } regularity of solutions is also investigated, chiefly via a priori estimates and perturbation techniques.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"659 - 683\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0037\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要证明了一个参数奇异拟线性椭圆问题两个解的存在性。该方程由Φ\ Phi-拉普拉斯算子驱动,反应项可以是非单调的。所使用的主要工具是局部最小定理和山口定理,以及截断技术。还主要通过先验估计和扰动技术研究了解的全局C1,τ{C}^{1,\τ}正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of two solutions for singular Φ-Laplacian problems
Abstract Existence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by the Φ \Phi -Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. Global C 1 , τ {C}^{1,\tau } regularity of solutions is also investigated, chiefly via a priori estimates and perturbation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信