{"title":"六边形数的多重性","authors":"Cameron G. Hale, Jonathan R. Kelleher, J. Mayer","doi":"10.1080/07468342.2022.2120326","DOIUrl":null,"url":null,"abstract":"Summary Imagine you have an unlimited supply of congruent equilateral triangles. Polygon numbers are the number of these triangles used to tile a convex polygon. For example, triangle numbers are square integers n 2, where the positive integer n is the side length of a tiled equilateral triangle. Hexagon numbers are the number of triangles used to tile a convex hexagon, and can be realized by removing corners from a tiled equilateral triangle. The number of ways (multiplicity up to congruence) that a given hexagon number can be constructed geometrically from such tiles is the subject of our paper.","PeriodicalId":38710,"journal":{"name":"College Mathematics Journal","volume":"53 1","pages":"335 - 346"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity of Hexagon Numbers\",\"authors\":\"Cameron G. Hale, Jonathan R. Kelleher, J. Mayer\",\"doi\":\"10.1080/07468342.2022.2120326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Imagine you have an unlimited supply of congruent equilateral triangles. Polygon numbers are the number of these triangles used to tile a convex polygon. For example, triangle numbers are square integers n 2, where the positive integer n is the side length of a tiled equilateral triangle. Hexagon numbers are the number of triangles used to tile a convex hexagon, and can be realized by removing corners from a tiled equilateral triangle. The number of ways (multiplicity up to congruence) that a given hexagon number can be constructed geometrically from such tiles is the subject of our paper.\",\"PeriodicalId\":38710,\"journal\":{\"name\":\"College Mathematics Journal\",\"volume\":\"53 1\",\"pages\":\"335 - 346\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"College Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07468342.2022.2120326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"College Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07468342.2022.2120326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
Summary Imagine you have an unlimited supply of congruent equilateral triangles. Polygon numbers are the number of these triangles used to tile a convex polygon. For example, triangle numbers are square integers n 2, where the positive integer n is the side length of a tiled equilateral triangle. Hexagon numbers are the number of triangles used to tile a convex hexagon, and can be realized by removing corners from a tiled equilateral triangle. The number of ways (multiplicity up to congruence) that a given hexagon number can be constructed geometrically from such tiles is the subject of our paper.