多波新冠肺炎疫情的实时预测

IF 0.5 Q4 STATISTICS & PROBABILITY
F. Zuhairoh, D. Rosadi
{"title":"多波新冠肺炎疫情的实时预测","authors":"F. Zuhairoh, D. Rosadi","doi":"10.29220/csam.2022.29.5.499","DOIUrl":null,"url":null,"abstract":"Intervention measures have been implemented worldwide to reduce the spread of the COVID-19 outbreak. The COVID-19 outbreak has occured in several waves of infection, so this paper is divided into three groups, namely those countries who have passed the pandemic period, those countries who are still experiencing a single -wave pandemic, and those countries who are experiencing a multi-wave pandemic. The purpose of this study is to develop a multi-wave Richards model with several changepoint detection methods so as to obtain more accurate prediction results, especially for the multi-wave case. We investigated epidemiological trends in different countries from January 2020 to October 2021 to determine the temporal changes during the epidemic with respect to the intervention strategy used. In this article, we adjust the daily cumulative epidemiological data for COVID-19 using the logistic growth model and the multi-wave Richards curve development model. The changepoint detection methods used include the interpolation method, the Pruned Exact Linear Time (PELT) method, and the Binary Segmentation (BS) method. The results of the analysis using 9 countries show that the Richards model development can be used to analyze multi-wave data using changepoint detection so that the initial data used for prediction on the last wave can be determined precisely. The changepoint used is the coincident changepoint generated by the PELT and BS methods. The interpolation method is only used to find out how many pandemic waves have occurred in given a country. Several waves have been identified and can better describe the data. Our results can find the peak of the pandemic and when it will end in each country, both for a single-wave pandemic and a multi-wave pandemic.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-time prediction for multi-wave COVID-19 outbreaks\",\"authors\":\"F. Zuhairoh, D. Rosadi\",\"doi\":\"10.29220/csam.2022.29.5.499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intervention measures have been implemented worldwide to reduce the spread of the COVID-19 outbreak. The COVID-19 outbreak has occured in several waves of infection, so this paper is divided into three groups, namely those countries who have passed the pandemic period, those countries who are still experiencing a single -wave pandemic, and those countries who are experiencing a multi-wave pandemic. The purpose of this study is to develop a multi-wave Richards model with several changepoint detection methods so as to obtain more accurate prediction results, especially for the multi-wave case. We investigated epidemiological trends in different countries from January 2020 to October 2021 to determine the temporal changes during the epidemic with respect to the intervention strategy used. In this article, we adjust the daily cumulative epidemiological data for COVID-19 using the logistic growth model and the multi-wave Richards curve development model. The changepoint detection methods used include the interpolation method, the Pruned Exact Linear Time (PELT) method, and the Binary Segmentation (BS) method. The results of the analysis using 9 countries show that the Richards model development can be used to analyze multi-wave data using changepoint detection so that the initial data used for prediction on the last wave can be determined precisely. The changepoint used is the coincident changepoint generated by the PELT and BS methods. The interpolation method is only used to find out how many pandemic waves have occurred in given a country. Several waves have been identified and can better describe the data. Our results can find the peak of the pandemic and when it will end in each country, both for a single-wave pandemic and a multi-wave pandemic.\",\"PeriodicalId\":44931,\"journal\":{\"name\":\"Communications for Statistical Applications and Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications for Statistical Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29220/csam.2022.29.5.499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications for Statistical Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29220/csam.2022.29.5.499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

世界各地已采取干预措施,以减少新冠肺炎疫情的传播。新冠肺炎疫情是在几波感染中发生的,因此本文将其分为三组,即已经度过大流行期的国家、仍在经历单波大流行的国家和正在经历多波大流行的各国。本研究的目的是开发一个具有多种变点检测方法的多波Richards模型,以获得更准确的预测结果,特别是对于多波情况。我们调查了2020年1月至2021年10月不同国家的流行病学趋势,以确定疫情期间所使用的干预策略的时间变化。在本文中,我们使用逻辑增长模型和多波Richards曲线发展模型调整了新冠肺炎的每日累积流行病学数据。使用的变化点检测方法包括插值方法、修剪精确线性时间(PELT)方法和二进制分割(BS)方法。对9个国家的分析结果表明,Richards模型的开发可以用于使用变点检测分析多波数据,从而可以精确地确定用于预测最后一波的初始数据。使用的变化点是由PELT和BS方法生成的重合变化点。插值方法只用于计算某个国家发生了多少次疫情。已经确定了几个波,可以更好地描述数据。我们的研究结果可以找到每个国家的疫情高峰以及何时结束,无论是单波疫情还是多波疫情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time prediction for multi-wave COVID-19 outbreaks
Intervention measures have been implemented worldwide to reduce the spread of the COVID-19 outbreak. The COVID-19 outbreak has occured in several waves of infection, so this paper is divided into three groups, namely those countries who have passed the pandemic period, those countries who are still experiencing a single -wave pandemic, and those countries who are experiencing a multi-wave pandemic. The purpose of this study is to develop a multi-wave Richards model with several changepoint detection methods so as to obtain more accurate prediction results, especially for the multi-wave case. We investigated epidemiological trends in different countries from January 2020 to October 2021 to determine the temporal changes during the epidemic with respect to the intervention strategy used. In this article, we adjust the daily cumulative epidemiological data for COVID-19 using the logistic growth model and the multi-wave Richards curve development model. The changepoint detection methods used include the interpolation method, the Pruned Exact Linear Time (PELT) method, and the Binary Segmentation (BS) method. The results of the analysis using 9 countries show that the Richards model development can be used to analyze multi-wave data using changepoint detection so that the initial data used for prediction on the last wave can be determined precisely. The changepoint used is the coincident changepoint generated by the PELT and BS methods. The interpolation method is only used to find out how many pandemic waves have occurred in given a country. Several waves have been identified and can better describe the data. Our results can find the peak of the pandemic and when it will end in each country, both for a single-wave pandemic and a multi-wave pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
49
期刊介绍: Communications for Statistical Applications and Methods (Commun. Stat. Appl. Methods, CSAM) is an official journal of the Korean Statistical Society and Korean International Statistical Society. It is an international and Open Access journal dedicated to publishing peer-reviewed, high quality and innovative statistical research. CSAM publishes articles on applied and methodological research in the areas of statistics and probability. It features rapid publication and broad coverage of statistical applications and methods. It welcomes papers on novel applications of statistical methodology in the areas including medicine (pharmaceutical, biotechnology, medical device), business, management, economics, ecology, education, computing, engineering, operational research, biology, sociology and earth science, but papers from other areas are also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信