{"title":"采用不同智能整定方法的PID-AFC混合控制器降低悬挂手柄振动的数值方法","authors":"M. Satar, Wong Jen Nyap, A. Mazlan","doi":"10.20855/IJAV.2020.25.11713","DOIUrl":null,"url":null,"abstract":"This paper focusses on the study of vibration attenuations for suspended handle models that are generated from power tools using an intelligent active force control (AFC) tuning strategy. Four types of control schemes are comparatively evaluated in suppressing the vibration of the handle, such as proportional-integral-derivative (PID), PID-AFC-crude approximation (AFCCA), PID-AFC-fuzzy logic (AFCFL) and PID-AFC-iterative learning method (AFCILM) control schemes. In all control schemes, the estimated counter force is generated from the actuating force and appropriate estimated mass M* that has been intelligently tuned to counter the system disturbances. The disturbances are modelled based on the power tools vibration (i.e., internal disturbance) and uncertainties during the operation (i.e., external disturbances). The study shows that the AFCCA scheme demonstrates the best performance when the M(CL) is tuned at 0.04 kg. For the AFCFL control scheme, the best response is obtained for the membership function of trapezoidal shape with M(FL) of 0.0403 kg, while for AFCILM control scheme, the best response is achieved when M(ILM) is tuned to 0.04 kg, with both parameters (A and B) set at 0.6. Overall, PID-AFCCA scheme shows the best performances for all of the case studies, followed by PID-AFCFL and PID-AFCILM. The findings of this study can benefit the power tool manufacturers and provide the basis of effectively intelligent controller design for the power tools application.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"26 1","pages":"28-40"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Approach on Hybrid PID-AFC Controller using Different Intelligent Tuning Methods to Reduce the Vibration of the Suspended Handle\",\"authors\":\"M. Satar, Wong Jen Nyap, A. Mazlan\",\"doi\":\"10.20855/IJAV.2020.25.11713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focusses on the study of vibration attenuations for suspended handle models that are generated from power tools using an intelligent active force control (AFC) tuning strategy. Four types of control schemes are comparatively evaluated in suppressing the vibration of the handle, such as proportional-integral-derivative (PID), PID-AFC-crude approximation (AFCCA), PID-AFC-fuzzy logic (AFCFL) and PID-AFC-iterative learning method (AFCILM) control schemes. In all control schemes, the estimated counter force is generated from the actuating force and appropriate estimated mass M* that has been intelligently tuned to counter the system disturbances. The disturbances are modelled based on the power tools vibration (i.e., internal disturbance) and uncertainties during the operation (i.e., external disturbances). The study shows that the AFCCA scheme demonstrates the best performance when the M(CL) is tuned at 0.04 kg. For the AFCFL control scheme, the best response is obtained for the membership function of trapezoidal shape with M(FL) of 0.0403 kg, while for AFCILM control scheme, the best response is achieved when M(ILM) is tuned to 0.04 kg, with both parameters (A and B) set at 0.6. Overall, PID-AFCCA scheme shows the best performances for all of the case studies, followed by PID-AFCFL and PID-AFCILM. The findings of this study can benefit the power tool manufacturers and provide the basis of effectively intelligent controller design for the power tools application.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":\"26 1\",\"pages\":\"28-40\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/IJAV.2020.25.11713\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/IJAV.2020.25.11713","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Numerical Approach on Hybrid PID-AFC Controller using Different Intelligent Tuning Methods to Reduce the Vibration of the Suspended Handle
This paper focusses on the study of vibration attenuations for suspended handle models that are generated from power tools using an intelligent active force control (AFC) tuning strategy. Four types of control schemes are comparatively evaluated in suppressing the vibration of the handle, such as proportional-integral-derivative (PID), PID-AFC-crude approximation (AFCCA), PID-AFC-fuzzy logic (AFCFL) and PID-AFC-iterative learning method (AFCILM) control schemes. In all control schemes, the estimated counter force is generated from the actuating force and appropriate estimated mass M* that has been intelligently tuned to counter the system disturbances. The disturbances are modelled based on the power tools vibration (i.e., internal disturbance) and uncertainties during the operation (i.e., external disturbances). The study shows that the AFCCA scheme demonstrates the best performance when the M(CL) is tuned at 0.04 kg. For the AFCFL control scheme, the best response is obtained for the membership function of trapezoidal shape with M(FL) of 0.0403 kg, while for AFCILM control scheme, the best response is achieved when M(ILM) is tuned to 0.04 kg, with both parameters (A and B) set at 0.6. Overall, PID-AFCCA scheme shows the best performances for all of the case studies, followed by PID-AFCFL and PID-AFCILM. The findings of this study can benefit the power tool manufacturers and provide the basis of effectively intelligent controller design for the power tools application.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.