{"title":"扭曲交叉积与扭曲梯度Hecke代数的Hochschild同调","authors":"M. Solleveld","doi":"10.2140/akt.2023.8.81","DOIUrl":null,"url":null,"abstract":"Let A be a \\C-algebra with an action of a finite group G, let $\\natural$ be a 2-cocycle on $G$ and consider the twisted crossed product $A \\rtimes \\C [G,\\natural]$. We determine the Hochschild homology of $A \\rtimes \\C [G,\\natural]$ for two classes of algebras A: - rings of regular functions on nonsingular affine varieties, - graded Hecke algebras. The results are achieved via algebraic families of (virtual) representations and include a description of the Hochschild homology as module over the centre of $A \\rtimes \\C [G,\\natural]$. This paper prepares for a computation of the Hochschild homology of the Hecke algebra of a reductive p-adic group.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hochschild homology of twisted crossed products and twisted graded Hecke algebras\",\"authors\":\"M. Solleveld\",\"doi\":\"10.2140/akt.2023.8.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A be a \\\\C-algebra with an action of a finite group G, let $\\\\natural$ be a 2-cocycle on $G$ and consider the twisted crossed product $A \\\\rtimes \\\\C [G,\\\\natural]$. We determine the Hochschild homology of $A \\\\rtimes \\\\C [G,\\\\natural]$ for two classes of algebras A: - rings of regular functions on nonsingular affine varieties, - graded Hecke algebras. The results are achieved via algebraic families of (virtual) representations and include a description of the Hochschild homology as module over the centre of $A \\\\rtimes \\\\C [G,\\\\natural]$. This paper prepares for a computation of the Hochschild homology of the Hecke algebra of a reductive p-adic group.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2023.8.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
设A是一个作用于有限群G的C代数,设$\natural$是$G$上的一个2环,并考虑其扭曲叉积$A \r乘以\C [G,\natural]$。我们确定了两类代数A:非奇异仿射变异-分阶Hecke代数上正则函数环的Hochschild同调。结果是通过(虚拟)表示的代数族实现的,并包括Hochschild同调的描述,作为$ a \rtimes \C [G,\natural]$中心上的模。本文准备了一个约化p进群的Hecke代数的Hochschild同调的计算。
Hochschild homology of twisted crossed products and twisted graded Hecke algebras
Let A be a \C-algebra with an action of a finite group G, let $\natural$ be a 2-cocycle on $G$ and consider the twisted crossed product $A \rtimes \C [G,\natural]$. We determine the Hochschild homology of $A \rtimes \C [G,\natural]$ for two classes of algebras A: - rings of regular functions on nonsingular affine varieties, - graded Hecke algebras. The results are achieved via algebraic families of (virtual) representations and include a description of the Hochschild homology as module over the centre of $A \rtimes \C [G,\natural]$. This paper prepares for a computation of the Hochschild homology of the Hecke algebra of a reductive p-adic group.