关于区域分式拉普拉斯算子的Rayleigh-Faber-Krahn不等式

Tianling Jin, D. Kriventsov, Jingang Xiong
{"title":"关于区域分式拉普拉斯算子的Rayleigh-Faber-Krahn不等式","authors":"Tianling Jin, D. Kriventsov, Jingang Xiong","doi":"10.4208/aam.oa-2021-0005","DOIUrl":null,"url":null,"abstract":"We study a Rayleigh-Faber-Krahn inequality for regional fractional Laplacian operators. In particular, we show that there exists a compactly supported nonnegative Sobolev function u0 that attains the infimum (which will be a positive real number) of the set {∫∫ {u>0}×{u>0} |u(x)− u(y)| |x− y| dxdy : u ∈ H̊(R), ∫ R u = 1, |{u > 0}| ≤ 1 } . Unlike the corresponding problem for the usual fractional Laplacian, where the domain of the integration is R × R, symmetrization techniques may not apply here. Our approach is instead based on the direct method and new a priori diameter estimates. We also present several remaining open questions concerning the regularity and shape of the minimizers, and the form of the Euler-Lagrange equations.","PeriodicalId":58853,"journal":{"name":"应用数学年刊:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On a Rayleigh-Faber-Krahn Inequality for the Regional Fractional Laplacian\",\"authors\":\"Tianling Jin, D. Kriventsov, Jingang Xiong\",\"doi\":\"10.4208/aam.oa-2021-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a Rayleigh-Faber-Krahn inequality for regional fractional Laplacian operators. In particular, we show that there exists a compactly supported nonnegative Sobolev function u0 that attains the infimum (which will be a positive real number) of the set {∫∫ {u>0}×{u>0} |u(x)− u(y)| |x− y| dxdy : u ∈ H̊(R), ∫ R u = 1, |{u > 0}| ≤ 1 } . Unlike the corresponding problem for the usual fractional Laplacian, where the domain of the integration is R × R, symmetrization techniques may not apply here. Our approach is instead based on the direct method and new a priori diameter estimates. We also present several remaining open questions concerning the regularity and shape of the minimizers, and the form of the Euler-Lagrange equations.\",\"PeriodicalId\":58853,\"journal\":{\"name\":\"应用数学年刊:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用数学年刊:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4208/aam.oa-2021-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用数学年刊:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4208/aam.oa-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了区域分数拉普拉斯算子的Rayleigh-Faber-Krahn不等式。特别地,我们证明了存在一个紧支持的非负Sobolev函数u0,它达到了集{Ş{u>0}×{u>0}|u(x)−u(y)|x−y|dxdy的下确界(这将是一个正实数):u∈H(R),ŞR u=1,|{u>0}|≤1}。与通常的分数拉普拉斯算子的相应问题不同,其中积分的域是R×R,对称化技术可能不适用于此。相反,我们的方法是基于直接方法和新的先验直径估计。我们还提出了几个悬而未决的问题,涉及极小值的正则性和形状,以及欧拉-拉格朗日方程的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Rayleigh-Faber-Krahn Inequality for the Regional Fractional Laplacian
We study a Rayleigh-Faber-Krahn inequality for regional fractional Laplacian operators. In particular, we show that there exists a compactly supported nonnegative Sobolev function u0 that attains the infimum (which will be a positive real number) of the set {∫∫ {u>0}×{u>0} |u(x)− u(y)| |x− y| dxdy : u ∈ H̊(R), ∫ R u = 1, |{u > 0}| ≤ 1 } . Unlike the corresponding problem for the usual fractional Laplacian, where the domain of the integration is R × R, symmetrization techniques may not apply here. Our approach is instead based on the direct method and new a priori diameter estimates. We also present several remaining open questions concerning the regularity and shape of the minimizers, and the form of the Euler-Lagrange equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
544
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信