平均场粒子系统的一致Poincaré和对数Sobolev不等式

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
A. Guillin, Wei Liu, Liming Wu, Chao Zhang
{"title":"平均场粒子系统的一致Poincaré和对数Sobolev不等式","authors":"A. Guillin, Wei Liu, Liming Wu, Chao Zhang","doi":"10.1214/21-aap1707","DOIUrl":null,"url":null,"abstract":"In this paper we consider a mean field particle systems whose confinement potentials have many local minima. We establish some explicit and sharp estimates of the spectral gap and logarithmic Sobolev constants uniform in the number of particles. The uniform Poincaré inequality is based on the work of Ledoux [20] and the uniform logarithmic Sobolev inequality is based on Zegarlinski’s theorem for Gibbs measures, both combined with an explicit estimate of the Lipschitz norm of the Poisson operator for a single particle from [29]. The logarithmic Sobolev inequality then implies the exponential convergence in entropy of the McKean-Vlasov equation with an explicit rate, We need here weaker conditions than the results of [10] (by means of the displacement convexity approach), [21, 22] (by Bakry-Emery’s technique) or the recent work [9] (by dissipation of the Wasserstein distance).","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Uniform Poincaré and logarithmic Sobolev inequalities for mean field particle systems\",\"authors\":\"A. Guillin, Wei Liu, Liming Wu, Chao Zhang\",\"doi\":\"10.1214/21-aap1707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a mean field particle systems whose confinement potentials have many local minima. We establish some explicit and sharp estimates of the spectral gap and logarithmic Sobolev constants uniform in the number of particles. The uniform Poincaré inequality is based on the work of Ledoux [20] and the uniform logarithmic Sobolev inequality is based on Zegarlinski’s theorem for Gibbs measures, both combined with an explicit estimate of the Lipschitz norm of the Poisson operator for a single particle from [29]. The logarithmic Sobolev inequality then implies the exponential convergence in entropy of the McKean-Vlasov equation with an explicit rate, We need here weaker conditions than the results of [10] (by means of the displacement convexity approach), [21, 22] (by Bakry-Emery’s technique) or the recent work [9] (by dissipation of the Wasserstein distance).\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aap1707\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aap1707","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 32

摘要

本文考虑一个约束势具有许多局部极小值的平均场粒子系统。我们对粒子数量均匀的谱间隙和对数索博列夫常数进行了一些明确而尖锐的估计。一致Poincaré不等式基于Ledoux[20]的工作,一致对数Sobolev不等式基于吉布斯测度的Zegarlinski定理,两者都与[29]中单个粒子的泊松算子的Lipschitz范数的显式估计相结合。对数Sobolev不等式暗示了具有显式速率的McKean-Vlasov方程的熵的指数收敛性。这里我们需要比[10](通过位移凸性方法)、[21,22](通过Bakry-Emery的技术)或最近的工作[9](通过Wasserstein距离的耗散)的结果弱的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform Poincaré and logarithmic Sobolev inequalities for mean field particle systems
In this paper we consider a mean field particle systems whose confinement potentials have many local minima. We establish some explicit and sharp estimates of the spectral gap and logarithmic Sobolev constants uniform in the number of particles. The uniform Poincaré inequality is based on the work of Ledoux [20] and the uniform logarithmic Sobolev inequality is based on Zegarlinski’s theorem for Gibbs measures, both combined with an explicit estimate of the Lipschitz norm of the Poisson operator for a single particle from [29]. The logarithmic Sobolev inequality then implies the exponential convergence in entropy of the McKean-Vlasov equation with an explicit rate, We need here weaker conditions than the results of [10] (by means of the displacement convexity approach), [21, 22] (by Bakry-Emery’s technique) or the recent work [9] (by dissipation of the Wasserstein distance).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信