侧风条件下机舱RANS模拟的各向同性和各向异性网格自适应

IF 1.1 Q4 ENGINEERING, MECHANICAL
Billon Laure, Papadogiannis Dimitrios, Alauzet Frédéric
{"title":"侧风条件下机舱RANS模拟的各向同性和各向异性网格自适应","authors":"Billon Laure, Papadogiannis Dimitrios, Alauzet Frédéric","doi":"10.33737/jgpps/162640","DOIUrl":null,"url":null,"abstract":"Mesh adaptation of unstructured meshes for aerodynamic simulations, that typically resolve the Reynolds Averaged Navier-Stokes (RANS) equations, is a promising approach to enable high numerical precision on complex geometries. Its objective is to minimize the discretization error without using empirical meshing guidelines. The most common approach of mesh adaptation is the “feature-based” isotropic mesh adaptation: from an initial flow prediction on an isotropic unstructured mesh, a local error estimator is computed using a flow variable. It is then used to adapt the mesh using isotropic tetrahedra. Additional near-wall resolution can be achieved by extruding prism layers from the walls. A more efficient approach is to use anisotropic mesh adaptation purely with tetrahedra that are stretched to follow the flow's preferential directions. In this work, we demonstrate the abilities of feature-based isotropic and anisotropic mesh adaptation on a complex flow phenomenon of importance for jet engines: flow separation in a nacelle under crosswind conditions. Two different solvers, adapted for either isotropic or anisotropic meshes, are employed. Results are compared with standard unstructured simulations with user-imposed mesh refinements and highlight the ability of mesh adaptation to automatically capture all the relevant flow phenomena without any user input and at reduced mesh size.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotropic and anisotropic mesh adaptation for RANS simulations of a nacelle under crosswind conditions\",\"authors\":\"Billon Laure, Papadogiannis Dimitrios, Alauzet Frédéric\",\"doi\":\"10.33737/jgpps/162640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesh adaptation of unstructured meshes for aerodynamic simulations, that typically resolve the Reynolds Averaged Navier-Stokes (RANS) equations, is a promising approach to enable high numerical precision on complex geometries. Its objective is to minimize the discretization error without using empirical meshing guidelines. The most common approach of mesh adaptation is the “feature-based” isotropic mesh adaptation: from an initial flow prediction on an isotropic unstructured mesh, a local error estimator is computed using a flow variable. It is then used to adapt the mesh using isotropic tetrahedra. Additional near-wall resolution can be achieved by extruding prism layers from the walls. A more efficient approach is to use anisotropic mesh adaptation purely with tetrahedra that are stretched to follow the flow's preferential directions. In this work, we demonstrate the abilities of feature-based isotropic and anisotropic mesh adaptation on a complex flow phenomenon of importance for jet engines: flow separation in a nacelle under crosswind conditions. Two different solvers, adapted for either isotropic or anisotropic meshes, are employed. Results are compared with standard unstructured simulations with user-imposed mesh refinements and highlight the ability of mesh adaptation to automatically capture all the relevant flow phenomena without any user input and at reduced mesh size.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/jgpps/162640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/162640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于空气动力学模拟的非结构化网格的网格自适应,通常解决雷诺平均纳维-斯托克斯(RANS)方程,是在复杂几何形状上实现高数值精度的一种很有前途的方法。其目标是在不使用经验网格准则的情况下最小化离散化误差。网格自适应最常见的方法是“基于特征”的各向同性网格自适应:从各向同性非结构化网格上的初始流量预测,使用流量变量计算局部误差估计器。然后使用它来调整使用各向同性四面体的网格。额外的近墙分辨率可以通过从墙上挤出棱镜层来实现。一种更有效的方法是纯粹使用各向异性网格自适应,四面体被拉伸以遵循流动的优先方向。在这项工作中,我们展示了基于特征的各向同性和各向异性网格对喷气发动机重要的复杂流动现象的适应能力:侧风条件下机舱中的流动分离。采用两种不同的求解器,适用于各向同性或各向异性网格。将结果与具有用户强加的网格细化的标准非结构化模拟进行比较,并强调了网格自适应的能力,即在没有任何用户输入的情况下以减小的网格尺寸自动捕捉所有相关的流动现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isotropic and anisotropic mesh adaptation for RANS simulations of a nacelle under crosswind conditions
Mesh adaptation of unstructured meshes for aerodynamic simulations, that typically resolve the Reynolds Averaged Navier-Stokes (RANS) equations, is a promising approach to enable high numerical precision on complex geometries. Its objective is to minimize the discretization error without using empirical meshing guidelines. The most common approach of mesh adaptation is the “feature-based” isotropic mesh adaptation: from an initial flow prediction on an isotropic unstructured mesh, a local error estimator is computed using a flow variable. It is then used to adapt the mesh using isotropic tetrahedra. Additional near-wall resolution can be achieved by extruding prism layers from the walls. A more efficient approach is to use anisotropic mesh adaptation purely with tetrahedra that are stretched to follow the flow's preferential directions. In this work, we demonstrate the abilities of feature-based isotropic and anisotropic mesh adaptation on a complex flow phenomenon of importance for jet engines: flow separation in a nacelle under crosswind conditions. Two different solvers, adapted for either isotropic or anisotropic meshes, are employed. Results are compared with standard unstructured simulations with user-imposed mesh refinements and highlight the ability of mesh adaptation to automatically capture all the relevant flow phenomena without any user input and at reduced mesh size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信