{"title":"有风条件下大尺度三维异常浪的确定性数值模拟","authors":"Jinghua Wang , Shiqiang Yan , Qingwei Ma","doi":"10.1016/j.piutam.2018.03.021","DOIUrl":null,"url":null,"abstract":"<div><p>Oceanic rogue waves are a subject of great interest and can cause devastating consequences. Rogue waves are abnormal in that they stand out from the waves that surround them. Rogue waves are often observed accompanied by high wind in reality, and some earlier studies have demonstrated that the energy input due to the wind can enhance the dynamics of the rogue waves, which further causes huge concern about the safety of the human’s oceanic activities. Thus it is important, to better understand the mechanisms between the wind-wave interactions and to study the rogue waves with the presence of wind, especially on a three-dimensional large scale. In this study, numerical simulations are performed by using the Enhanced Spectral Boundary Integral (ESBI) method based on the fully nonlinear potential theory, in order to investigate the effects of wind on the rogue waves. The wind effects are introduced by imposing a wind-driven pressure on the free surface, which is empirically formulated based on intensive numerical investigation using multiple-phase Navier-Stokes solver. The results of the simulation confirm that the presented ESBI can produce satisfactory results on the formation of rogue waves under the action of wind. It provides a foresight of modelling rogue waves with presence of wind on a large scale in a phase-resolved fashion, which may motivate relevant studies in the future.</p></div>","PeriodicalId":74499,"journal":{"name":"Procedia IUTAM","volume":"26 ","pages":"Pages 214-226"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.piutam.2018.03.021","citationCount":"3","resultStr":"{\"title\":\"Deterministic numerical modelling of three-dimensional rogue waves on large scale with presence of wind\",\"authors\":\"Jinghua Wang , Shiqiang Yan , Qingwei Ma\",\"doi\":\"10.1016/j.piutam.2018.03.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oceanic rogue waves are a subject of great interest and can cause devastating consequences. Rogue waves are abnormal in that they stand out from the waves that surround them. Rogue waves are often observed accompanied by high wind in reality, and some earlier studies have demonstrated that the energy input due to the wind can enhance the dynamics of the rogue waves, which further causes huge concern about the safety of the human’s oceanic activities. Thus it is important, to better understand the mechanisms between the wind-wave interactions and to study the rogue waves with the presence of wind, especially on a three-dimensional large scale. In this study, numerical simulations are performed by using the Enhanced Spectral Boundary Integral (ESBI) method based on the fully nonlinear potential theory, in order to investigate the effects of wind on the rogue waves. The wind effects are introduced by imposing a wind-driven pressure on the free surface, which is empirically formulated based on intensive numerical investigation using multiple-phase Navier-Stokes solver. The results of the simulation confirm that the presented ESBI can produce satisfactory results on the formation of rogue waves under the action of wind. It provides a foresight of modelling rogue waves with presence of wind on a large scale in a phase-resolved fashion, which may motivate relevant studies in the future.</p></div>\",\"PeriodicalId\":74499,\"journal\":{\"name\":\"Procedia IUTAM\",\"volume\":\"26 \",\"pages\":\"Pages 214-226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.piutam.2018.03.021\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia IUTAM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221098381830021X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia IUTAM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221098381830021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deterministic numerical modelling of three-dimensional rogue waves on large scale with presence of wind
Oceanic rogue waves are a subject of great interest and can cause devastating consequences. Rogue waves are abnormal in that they stand out from the waves that surround them. Rogue waves are often observed accompanied by high wind in reality, and some earlier studies have demonstrated that the energy input due to the wind can enhance the dynamics of the rogue waves, which further causes huge concern about the safety of the human’s oceanic activities. Thus it is important, to better understand the mechanisms between the wind-wave interactions and to study the rogue waves with the presence of wind, especially on a three-dimensional large scale. In this study, numerical simulations are performed by using the Enhanced Spectral Boundary Integral (ESBI) method based on the fully nonlinear potential theory, in order to investigate the effects of wind on the rogue waves. The wind effects are introduced by imposing a wind-driven pressure on the free surface, which is empirically formulated based on intensive numerical investigation using multiple-phase Navier-Stokes solver. The results of the simulation confirm that the presented ESBI can produce satisfactory results on the formation of rogue waves under the action of wind. It provides a foresight of modelling rogue waves with presence of wind on a large scale in a phase-resolved fashion, which may motivate relevant studies in the future.