埃及中西部沙漠可用航空重力数据的准确性评估

IF 1.2 Q4 REMOTE SENSING
A. Zaki, Ebtehal Younes, Osama El Ghrabawy, Islam Azab, M. Rabah
{"title":"埃及中西部沙漠可用航空重力数据的准确性评估","authors":"A. Zaki, Ebtehal Younes, Osama El Ghrabawy, Islam Azab, M. Rabah","doi":"10.1515/jag-2021-0066","DOIUrl":null,"url":null,"abstract":"Abstract In the current study, the accuracy of airborne gravity data is evaluated based on the most recent Global Geopotential Models (GGM) and terrestrial gravity data to find out to what extent these data are acceptable to be used in multi-applications (e. g., geodesy and geophysics). To achieve this goal, the remove-compute-restore (RCR) scheme, upward, and downward continuation operational methods (least square collocation and fast Fourier transform procedures) are applied. The airborne gravity data had been acquired by the Egyptian Nuclear Material Authority (ENMA) in the central-western desert for geological applications. Firstly, three GGMs models (EGM2008, EIGEN-6C4 and XGM2019e up to various degrees) are used to compare with the free-air airborne gravity anomaly, The EGM2008 model up to degree 720 produces the smallest mean and STD difference values with 2.59 and 3.07 mGal, respectively. The terrestrial gravity data are compared with the airborne gravity anomaly at both flight and ground levels. In-flight level, the terrestrial gravity data are upward continued to the flight level and compared with the airborne gravity anomaly. The statistical results show that the mean and STD differences are about 4.2 and 0.75 mGal, respectively. While in-ground level evaluation, two operational techniques are used to downward continue the airborne gravity data (Fast Fourier Transform (FFT) and Least Squares Collocation (LSC)). The combined Satellite model EGM2008 up to degree 720 and SRTM 30 m are used to remove and restore the long and short-wavelength information. It is observed that the collocation gives better statistical results than FFT with mean and STD difference values are about 3.13 and 1.13 and mGal, respectively.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accuracy assessment of available airborne gravity data in the central western desert of Egypt\",\"authors\":\"A. Zaki, Ebtehal Younes, Osama El Ghrabawy, Islam Azab, M. Rabah\",\"doi\":\"10.1515/jag-2021-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the current study, the accuracy of airborne gravity data is evaluated based on the most recent Global Geopotential Models (GGM) and terrestrial gravity data to find out to what extent these data are acceptable to be used in multi-applications (e. g., geodesy and geophysics). To achieve this goal, the remove-compute-restore (RCR) scheme, upward, and downward continuation operational methods (least square collocation and fast Fourier transform procedures) are applied. The airborne gravity data had been acquired by the Egyptian Nuclear Material Authority (ENMA) in the central-western desert for geological applications. Firstly, three GGMs models (EGM2008, EIGEN-6C4 and XGM2019e up to various degrees) are used to compare with the free-air airborne gravity anomaly, The EGM2008 model up to degree 720 produces the smallest mean and STD difference values with 2.59 and 3.07 mGal, respectively. The terrestrial gravity data are compared with the airborne gravity anomaly at both flight and ground levels. In-flight level, the terrestrial gravity data are upward continued to the flight level and compared with the airborne gravity anomaly. The statistical results show that the mean and STD differences are about 4.2 and 0.75 mGal, respectively. While in-ground level evaluation, two operational techniques are used to downward continue the airborne gravity data (Fast Fourier Transform (FFT) and Least Squares Collocation (LSC)). The combined Satellite model EGM2008 up to degree 720 and SRTM 30 m are used to remove and restore the long and short-wavelength information. It is observed that the collocation gives better statistical results than FFT with mean and STD difference values are about 3.13 and 1.13 and mGal, respectively.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2021-0066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2021-0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

摘要

摘要在当前的研究中,基于最新的全球地球位势模型(GGM)和地面重力数据来评估空气重力数据的准确性,以了解这些数据在多大程度上可用于多种应用(例如。 g.大地测量学和地球物理学)。为了实现这一目标,应用了移除-计算-恢复(RCR)方案、向上和向下连续运算方法(最小二乘配置和快速傅立叶变换过程)。空中重力数据是由埃及核材料管理局(ENMA)在中西部沙漠获得的,用于地质应用。首先,使用三个GGM模型(不同程度的EGM2008、EIGEN-6C4和XGM2019e)与自由空气空中重力异常进行比较。EGM2008模型在720度以下产生的平均和STD差值最小,分别为2.59和3.07mGal。将地面重力数据与飞行和地面水平的空中重力异常进行了比较。在飞行层,地面重力数据向上延续到飞行层,并与空中重力异常进行比较。统计结果表明,平均值和STD差异分别约为4.2和0.75mGal。在地面评估中,使用两种操作技术向下延续机载重力数据(快速傅立叶变换(FFT)和最小二乘配置(LSC))。EGM2008型组合卫星达到720度和SRTM 30 m用于去除和恢复长波长和短波长信息。与FFT相比,该配置给出了更好的统计结果,平均值和STD差值分别约为3.13和1.13以及mGal。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy assessment of available airborne gravity data in the central western desert of Egypt
Abstract In the current study, the accuracy of airborne gravity data is evaluated based on the most recent Global Geopotential Models (GGM) and terrestrial gravity data to find out to what extent these data are acceptable to be used in multi-applications (e. g., geodesy and geophysics). To achieve this goal, the remove-compute-restore (RCR) scheme, upward, and downward continuation operational methods (least square collocation and fast Fourier transform procedures) are applied. The airborne gravity data had been acquired by the Egyptian Nuclear Material Authority (ENMA) in the central-western desert for geological applications. Firstly, three GGMs models (EGM2008, EIGEN-6C4 and XGM2019e up to various degrees) are used to compare with the free-air airborne gravity anomaly, The EGM2008 model up to degree 720 produces the smallest mean and STD difference values with 2.59 and 3.07 mGal, respectively. The terrestrial gravity data are compared with the airborne gravity anomaly at both flight and ground levels. In-flight level, the terrestrial gravity data are upward continued to the flight level and compared with the airborne gravity anomaly. The statistical results show that the mean and STD differences are about 4.2 and 0.75 mGal, respectively. While in-ground level evaluation, two operational techniques are used to downward continue the airborne gravity data (Fast Fourier Transform (FFT) and Least Squares Collocation (LSC)). The combined Satellite model EGM2008 up to degree 720 and SRTM 30 m are used to remove and restore the long and short-wavelength information. It is observed that the collocation gives better statistical results than FFT with mean and STD difference values are about 3.13 and 1.13 and mGal, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信