利用monodromy挖掘潮流方程的对称性

IF 0.4 Q4 MATHEMATICS, APPLIED
J. Lindberg, N. Boston, B. Lesieutre
{"title":"利用monodromy挖掘潮流方程的对称性","authors":"J. Lindberg, N. Boston, B. Lesieutre","doi":"10.1145/3457341.3457346","DOIUrl":null,"url":null,"abstract":"We propose solving the power flow equations using monodromy. We prove the variety under consideration decomposes into trivial and nontrivial subvarieties and that the nontrivial subvariety is irreducible. We also show various symmetries in the solutions. We finish by giving numerical results comparing monodromy against polyhedral and total degree homotopy methods and giving an example of a network where we can find all solutions to the power flow equation using monodromy where other homotopy techniques fail. This work gives hope that finding all solutions to the power flow equations for networks of realistic size is possible.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"54 1","pages":"100 - 104"},"PeriodicalIF":0.4000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3457341.3457346","citationCount":"3","resultStr":"{\"title\":\"Exploiting symmetry in the power flow equations using monodromy\",\"authors\":\"J. Lindberg, N. Boston, B. Lesieutre\",\"doi\":\"10.1145/3457341.3457346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose solving the power flow equations using monodromy. We prove the variety under consideration decomposes into trivial and nontrivial subvarieties and that the nontrivial subvariety is irreducible. We also show various symmetries in the solutions. We finish by giving numerical results comparing monodromy against polyhedral and total degree homotopy methods and giving an example of a network where we can find all solutions to the power flow equation using monodromy where other homotopy techniques fail. This work gives hope that finding all solutions to the power flow equations for networks of realistic size is possible.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"54 1\",\"pages\":\"100 - 104\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3457341.3457346\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457341.3457346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457341.3457346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

我们提出用一项法求解潮流方程。证明了所考虑的变量分解为平凡子变量和非平凡子变量,并且证明了非平凡子变量是不可约的。我们还展示了解的各种对称性。最后,我们给出了单一性与多面体和全度同伦方法比较的数值结果,并给出了一个网络的例子,在这个网络中,我们可以用单一性找到其他同伦技术无法找到的功率流方程的所有解。这项工作给我们带来了希望,为实际规模的电网找到所有功率流方程的解是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting symmetry in the power flow equations using monodromy
We propose solving the power flow equations using monodromy. We prove the variety under consideration decomposes into trivial and nontrivial subvarieties and that the nontrivial subvariety is irreducible. We also show various symmetries in the solutions. We finish by giving numerical results comparing monodromy against polyhedral and total degree homotopy methods and giving an example of a network where we can find all solutions to the power flow equation using monodromy where other homotopy techniques fail. This work gives hope that finding all solutions to the power flow equations for networks of realistic size is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信