真分支映射与伪稳定向量丛

IF 0.6 Q3 MATHEMATICS
I. Biswas, A. J. Parameswaran
{"title":"真分支映射与伪稳定向量丛","authors":"I. Biswas, A. J. Parameswaran","doi":"10.1215/00192082-10817494","DOIUrl":null,"url":null,"abstract":"Let $X$ and $Y$ be irreducible normal projective varieties, of same dimension, defined over an algebraically closed field, and let $f : Y \\rightarrow X$ be a finite generically smooth morphism such that the corresponding homomorphism between the \\'etale fundamental groups $f_*:\\pi^{\\rm et}_{1}(Y) \\rightarrow\\pi^{\\rm et}_{1}(X)$ is surjective. Fix a polarization on $X$ and equip $Y$ with the pulled back polarization. For a point $y_0\\in Y$, let $\\varpi(Y, y_0)$ (respectively, $\\varpi(X, f(y_0))$) be the affine group scheme given by the neutral Tannakian category defined by the strongly pseudo-stable vector bundles of degree zero on $Y$ (respectively, $X$). We prove that the homomorphism $\\varpi(Y, y_0) \\rightarrow \\varpi(X, f(y_0))$ induced by $f$ is surjective. Let $E$ be a pseudo-stable vector bundle on $X$ and $F \\subset f^*E$ a pseudo-stable subbundle with $\\mu(F)= \\mu(f^*E)$. We prove that $f^*E$ is pseudo-stable and there is a pseudo-stable subbundle $W \\subset E$ such that $f^*W = F$ as subbundles of $f^*E$.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genuinely ramified maps and pseudo-stable vector bundles\",\"authors\":\"I. Biswas, A. J. Parameswaran\",\"doi\":\"10.1215/00192082-10817494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ and $Y$ be irreducible normal projective varieties, of same dimension, defined over an algebraically closed field, and let $f : Y \\\\rightarrow X$ be a finite generically smooth morphism such that the corresponding homomorphism between the \\\\'etale fundamental groups $f_*:\\\\pi^{\\\\rm et}_{1}(Y) \\\\rightarrow\\\\pi^{\\\\rm et}_{1}(X)$ is surjective. Fix a polarization on $X$ and equip $Y$ with the pulled back polarization. For a point $y_0\\\\in Y$, let $\\\\varpi(Y, y_0)$ (respectively, $\\\\varpi(X, f(y_0))$) be the affine group scheme given by the neutral Tannakian category defined by the strongly pseudo-stable vector bundles of degree zero on $Y$ (respectively, $X$). We prove that the homomorphism $\\\\varpi(Y, y_0) \\\\rightarrow \\\\varpi(X, f(y_0))$ induced by $f$ is surjective. Let $E$ be a pseudo-stable vector bundle on $X$ and $F \\\\subset f^*E$ a pseudo-stable subbundle with $\\\\mu(F)= \\\\mu(f^*E)$. We prove that $f^*E$ is pseudo-stable and there is a pseudo-stable subbundle $W \\\\subset E$ such that $f^*W = F$ as subbundles of $f^*E$.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10817494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10817494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$X$和$Y$是在代数闭域上定义的同维不可约正规投影变体,并且设$f:Y\rightarrowX$是有限的一般光滑态射,使得三个基本群$f_*:\pi^{\rm et}_{1}(Y)\rightarrow\pi^{\ rm et}_{1}(X)$之间的对应同态是满射的。修复$X$上的极化,并为$Y$配备拉回极化。对于y$中的点$y_0\,设$\varpi(y,y_0)$(分别为$\varpi(X,f(y_0))$)是由$y$上零度强伪稳定向量束定义的中立Tannakian范畴给出的仿射群方案(分别为$X$)。我们证明了由$f$诱导的同态$\varpi(Y,Y_0)\rightarrow\varpi(X,f(Y_0))$是满射的。设$E$是$X$上的伪稳定向量丛,$F\subet F^*E$是具有$\mu(F)=\mu(F^*E)$的伪稳定子丛。我们证明了$f^*E$是伪稳定的,并且存在一个伪稳定子丛$W\subet E$,使得$f^*W=f$作为$f^*E$的子丛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genuinely ramified maps and pseudo-stable vector bundles
Let $X$ and $Y$ be irreducible normal projective varieties, of same dimension, defined over an algebraically closed field, and let $f : Y \rightarrow X$ be a finite generically smooth morphism such that the corresponding homomorphism between the \'etale fundamental groups $f_*:\pi^{\rm et}_{1}(Y) \rightarrow\pi^{\rm et}_{1}(X)$ is surjective. Fix a polarization on $X$ and equip $Y$ with the pulled back polarization. For a point $y_0\in Y$, let $\varpi(Y, y_0)$ (respectively, $\varpi(X, f(y_0))$) be the affine group scheme given by the neutral Tannakian category defined by the strongly pseudo-stable vector bundles of degree zero on $Y$ (respectively, $X$). We prove that the homomorphism $\varpi(Y, y_0) \rightarrow \varpi(X, f(y_0))$ induced by $f$ is surjective. Let $E$ be a pseudo-stable vector bundle on $X$ and $F \subset f^*E$ a pseudo-stable subbundle with $\mu(F)= \mu(f^*E)$. We prove that $f^*E$ is pseudo-stable and there is a pseudo-stable subbundle $W \subset E$ such that $f^*W = F$ as subbundles of $f^*E$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信