M-矩阵与逆M-矩阵的扩展

IF 0.8 Q2 MATHEMATICS
J. McDonald, R. Nandi, K. Sivakumar, P. Sushmitha, M. Tsatsomeros, E. Wendler, Megan Wendler
{"title":"M-矩阵与逆M-矩阵的扩展","authors":"J. McDonald, R. Nandi, K. Sivakumar, P. Sushmitha, M. Tsatsomeros, E. Wendler, Megan Wendler","doi":"10.1515/spma-2020-0113","DOIUrl":null,"url":null,"abstract":"Abstract A class of matrices that simultaneously generalizes the M-matrices and the inverse M-matrices is brought forward and its properties are reviewed. It is interesting to see how this class bridges the properties of the matrices it generalizes and provides a new perspective on their classical theory.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"8 1","pages":"186 - 203"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0113","citationCount":"1","resultStr":"{\"title\":\"M-matrix and inverse M-matrix extensions\",\"authors\":\"J. McDonald, R. Nandi, K. Sivakumar, P. Sushmitha, M. Tsatsomeros, E. Wendler, Megan Wendler\",\"doi\":\"10.1515/spma-2020-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A class of matrices that simultaneously generalizes the M-matrices and the inverse M-matrices is brought forward and its properties are reviewed. It is interesting to see how this class bridges the properties of the matrices it generalizes and provides a new perspective on their classical theory.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"8 1\",\"pages\":\"186 - 203\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0113\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要提出了一类同时推广M-矩阵和逆M-矩阵的矩阵,并对其性质进行了评述。有趣的是,看看这一类是如何桥接它所推广的矩阵的性质的,并为它们的经典理论提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M-matrix and inverse M-matrix extensions
Abstract A class of matrices that simultaneously generalizes the M-matrices and the inverse M-matrices is brought forward and its properties are reviewed. It is interesting to see how this class bridges the properties of the matrices it generalizes and provides a new perspective on their classical theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信