{"title":"超欧拉有向图的控制对度和条件","authors":"Changchang Dong, J. Meng, Juan Liu","doi":"10.7151/dmgt.2476","DOIUrl":null,"url":null,"abstract":"Abstract A digraph D is supereulerian if D contains a spanning eulerian subdigraph. In this paper, we propose the following problem: is there an integer t with 0 ≤ t ≤ n − 3 so that any strong digraph with n vertices satisfying either both d(u) ≥ n − 1 + t and d(v) ≥ n − 2 − t or both d(u) ≥ n − 2 − t and d(v) ≥ n − 1 + t, for any pair of dominated or dominating nonadjacent vertices {u, v}, is supereulerian? We prove the cases when t = 0, t = n − 4 and t = n − 3. Moreover, we show that if a strong digraph D with n vertices satisfies min{d+(u)+d−(v), d−(u)+d+(v)} ≥ n−1 for any pair of dominated or dominating nonadjacent vertices {u, v} of D, then D is supereulerian.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominated Pair Degree Sum Conditions of Supereulerian Digraphs\",\"authors\":\"Changchang Dong, J. Meng, Juan Liu\",\"doi\":\"10.7151/dmgt.2476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A digraph D is supereulerian if D contains a spanning eulerian subdigraph. In this paper, we propose the following problem: is there an integer t with 0 ≤ t ≤ n − 3 so that any strong digraph with n vertices satisfying either both d(u) ≥ n − 1 + t and d(v) ≥ n − 2 − t or both d(u) ≥ n − 2 − t and d(v) ≥ n − 1 + t, for any pair of dominated or dominating nonadjacent vertices {u, v}, is supereulerian? We prove the cases when t = 0, t = n − 4 and t = n − 3. Moreover, we show that if a strong digraph D with n vertices satisfies min{d+(u)+d−(v), d−(u)+d+(v)} ≥ n−1 for any pair of dominated or dominating nonadjacent vertices {u, v} of D, then D is supereulerian.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
如果有向图D包含一个生成欧拉子图,则D是超欧拉图。在本文中,我们提出了以下问题:是否存在一个0≤t≤n−3的整数t,使得任何有n个顶点的强有向图既满足d(u)≥n−1 + t又满足d(v)≥n−2 - t或者d(u)≥n−2 - t又满足d(v)≥n−1 + t,对于任意支配或支配的非相邻顶点{u, v},都是超欧拉图?我们证明了t = 0, t = n - 4和t = n - 3的情况。此外,我们证明了如果一个有n个顶点的强有向图D满足min{D +(u)+ D−(v), D−(u)+ D +(v)}≥n−1,对于D的任意对支配或支配的非相邻顶点{u, v},则D是超欧拉的。
Dominated Pair Degree Sum Conditions of Supereulerian Digraphs
Abstract A digraph D is supereulerian if D contains a spanning eulerian subdigraph. In this paper, we propose the following problem: is there an integer t with 0 ≤ t ≤ n − 3 so that any strong digraph with n vertices satisfying either both d(u) ≥ n − 1 + t and d(v) ≥ n − 2 − t or both d(u) ≥ n − 2 − t and d(v) ≥ n − 1 + t, for any pair of dominated or dominating nonadjacent vertices {u, v}, is supereulerian? We prove the cases when t = 0, t = n − 4 and t = n − 3. Moreover, we show that if a strong digraph D with n vertices satisfies min{d+(u)+d−(v), d−(u)+d+(v)} ≥ n−1 for any pair of dominated or dominating nonadjacent vertices {u, v} of D, then D is supereulerian.