{"title":"具有左乘子的3素数近环的恒等式","authors":"M. Ashraf, A. Boua","doi":"10.22124/JART.2018.10093.1096","DOIUrl":null,"url":null,"abstract":"Let $mathcal{N}$ be a $3$-prime near-ring with the center$Z(mathcal{N})$ and $n geq 1$ be a fixed positive integer. Inthe present paper it is shown that a $3$-prime near-ring$mathcal{N}$ is a commutative ring if and only if it admits aleft multiplier $mathcal{F}$ satisfying any one of the followingproperties: $(i):mathcal{F}^{n}([x, y])in Z(mathcal{N})$, $(ii):mathcal{F}^{n}(xcirc y)in Z(mathcal{N})$,$(iii):mathcal{F}^{n}([x, y])pm(xcirc y)in Z(mathcal{N})$ and $(iv):mathcal{F}^{n}([x, y])pm xcirc yin Z(mathcal{N})$, for all $x, yinmathcal{N}$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"6 1","pages":"67-77"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identities in $3$-prime near-rings with left multipliers\",\"authors\":\"M. Ashraf, A. Boua\",\"doi\":\"10.22124/JART.2018.10093.1096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $mathcal{N}$ be a $3$-prime near-ring with the center$Z(mathcal{N})$ and $n geq 1$ be a fixed positive integer. Inthe present paper it is shown that a $3$-prime near-ring$mathcal{N}$ is a commutative ring if and only if it admits aleft multiplier $mathcal{F}$ satisfying any one of the followingproperties: $(i):mathcal{F}^{n}([x, y])in Z(mathcal{N})$, $(ii):mathcal{F}^{n}(xcirc y)in Z(mathcal{N})$,$(iii):mathcal{F}^{n}([x, y])pm(xcirc y)in Z(mathcal{N})$ and $(iv):mathcal{F}^{n}([x, y])pm xcirc yin Z(mathcal{N})$, for all $x, yinmathcal{N}$.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"6 1\",\"pages\":\"67-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2018.10093.1096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2018.10093.1096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Identities in $3$-prime near-rings with left multipliers
Let $mathcal{N}$ be a $3$-prime near-ring with the center$Z(mathcal{N})$ and $n geq 1$ be a fixed positive integer. Inthe present paper it is shown that a $3$-prime near-ring$mathcal{N}$ is a commutative ring if and only if it admits aleft multiplier $mathcal{F}$ satisfying any one of the followingproperties: $(i):mathcal{F}^{n}([x, y])in Z(mathcal{N})$, $(ii):mathcal{F}^{n}(xcirc y)in Z(mathcal{N})$,$(iii):mathcal{F}^{n}([x, y])pm(xcirc y)in Z(mathcal{N})$ and $(iv):mathcal{F}^{n}([x, y])pm xcirc yin Z(mathcal{N})$, for all $x, yinmathcal{N}$.