{"title":"本专题导言:关键矿产勘探","authors":"C. Weiss, Alan G. Jones","doi":"10.1190/tle42040236.1","DOIUrl":null,"url":null,"abstract":"This special section of The Leading Edge focuses on the issue of critical minerals from the perspective of recent progress in mining exploration and anticipated future needs as the global energy economy transitions to higher use of, and reliance on, renewables. The definition of a “critical mineral” is itself context dependent. For example, minerals such as lithium, nickel, cobalt, manganese, and graphite each are essential to the development of modern, high-efficiency lithium-ion batteries, and any disruptions to these minerals — whether through supply chain issues or raw, geologic access — ultimately impacts the future of this now-pervasive, and increasingly necessary, energy storage technology. Similarly, rare earth elements (REEs) have long been central to the manufacture of permanent magnets, which themselves are key components of wind turbines and electric vehicles, the latter of which account for 14% of global passenger car sales in 2022, up from 9% in the previous year. In the United States alone, the market forecast for electric vehicles is expected to grow to roughly US$137 billion in 2028, up from $24 billion in 2020. Lastly, the more “common” but still “critical” minerals copper and aluminum are the backbone of the rapidly expanding global energy distribution systems upon which our modern society is built.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Introduction to this special section: Critical minerals exploration\",\"authors\":\"C. Weiss, Alan G. Jones\",\"doi\":\"10.1190/tle42040236.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This special section of The Leading Edge focuses on the issue of critical minerals from the perspective of recent progress in mining exploration and anticipated future needs as the global energy economy transitions to higher use of, and reliance on, renewables. The definition of a “critical mineral” is itself context dependent. For example, minerals such as lithium, nickel, cobalt, manganese, and graphite each are essential to the development of modern, high-efficiency lithium-ion batteries, and any disruptions to these minerals — whether through supply chain issues or raw, geologic access — ultimately impacts the future of this now-pervasive, and increasingly necessary, energy storage technology. Similarly, rare earth elements (REEs) have long been central to the manufacture of permanent magnets, which themselves are key components of wind turbines and electric vehicles, the latter of which account for 14% of global passenger car sales in 2022, up from 9% in the previous year. In the United States alone, the market forecast for electric vehicles is expected to grow to roughly US$137 billion in 2028, up from $24 billion in 2020. Lastly, the more “common” but still “critical” minerals copper and aluminum are the backbone of the rapidly expanding global energy distribution systems upon which our modern society is built.\",\"PeriodicalId\":35661,\"journal\":{\"name\":\"Leading Edge\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leading Edge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/tle42040236.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42040236.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Introduction to this special section: Critical minerals exploration
This special section of The Leading Edge focuses on the issue of critical minerals from the perspective of recent progress in mining exploration and anticipated future needs as the global energy economy transitions to higher use of, and reliance on, renewables. The definition of a “critical mineral” is itself context dependent. For example, minerals such as lithium, nickel, cobalt, manganese, and graphite each are essential to the development of modern, high-efficiency lithium-ion batteries, and any disruptions to these minerals — whether through supply chain issues or raw, geologic access — ultimately impacts the future of this now-pervasive, and increasingly necessary, energy storage technology. Similarly, rare earth elements (REEs) have long been central to the manufacture of permanent magnets, which themselves are key components of wind turbines and electric vehicles, the latter of which account for 14% of global passenger car sales in 2022, up from 9% in the previous year. In the United States alone, the market forecast for electric vehicles is expected to grow to roughly US$137 billion in 2028, up from $24 billion in 2020. Lastly, the more “common” but still “critical” minerals copper and aluminum are the backbone of the rapidly expanding global energy distribution systems upon which our modern society is built.
期刊介绍:
THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.