关于-齐次双翘曲和双调和映射

IF 0.4 Q4 MATHEMATICS
Mohamed Elmahdi Abbes, S. Ouakkas
{"title":"关于-齐次双翘曲和双调和映射","authors":"Mohamed Elmahdi Abbes, S. Ouakkas","doi":"10.1080/1726037X.2020.1859802","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this paper is to study the biharmonicity of maps to or from almost contact manifolds. It also gives some results on the Fx1-homothetic bi-warping. We establish necessary and sufficient conditions under which a map of the product of a Riemannian manifold and an almost contact metric manifold is harmonic or biharmonic and we have constructed several examples.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"281 - 309"},"PeriodicalIF":0.4000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1859802","citationCount":"1","resultStr":"{\"title\":\"On the -Homothetic BI-Warping and Biharmonic Maps\",\"authors\":\"Mohamed Elmahdi Abbes, S. Ouakkas\",\"doi\":\"10.1080/1726037X.2020.1859802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this paper is to study the biharmonicity of maps to or from almost contact manifolds. It also gives some results on the Fx1-homothetic bi-warping. We establish necessary and sufficient conditions under which a map of the product of a Riemannian manifold and an almost contact metric manifold is harmonic or biharmonic and we have constructed several examples.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"281 - 309\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1859802\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1859802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1859802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文的目的是研究到几乎接触流形或从几乎接触流形映射的双调和性。给出了关于fx1 -齐次双翘曲的一些结果。我们建立了黎曼流形与几乎接触度量流形乘积的映射调和或双调和的充分必要条件,并构造了几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the -Homothetic BI-Warping and Biharmonic Maps
Abstract The purpose of this paper is to study the biharmonicity of maps to or from almost contact manifolds. It also gives some results on the Fx1-homothetic bi-warping. We establish necessary and sufficient conditions under which a map of the product of a Riemannian manifold and an almost contact metric manifold is harmonic or biharmonic and we have constructed several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信