{"title":"空化起始及其尺度效应计算分析的最新进展","authors":"E. Amromin","doi":"10.5750/ijme.v164ia4.814","DOIUrl":null,"url":null,"abstract":"Mathematical analysis of cavitation inception is an important topic for naval engineering, but several circumstances make it difficult. First, cavitating flows are substantially multi-zone flows, where the appearing cavities are incomparably smaller than a cavitating body is. Second, inception is substantially influenced by characteristics of the inflow and of the body surfaces. Third, validation of employed mathematical methods by comparison with experimental data is a non-trivial task because of the complexity of experiments themselves and scale effects. This paper is emphasized on multi-zone quasi-steady approaches for prediction of cavitation inception and desinence numbers. The obtained computational results are compared with the known experimental data for sheet cavitation, vortex cavitation and cavitation behind surface irregularities. Procedures of scaling of cavitation inception number and the eventual combinations of various CFD solvers are also discussed.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STATE-OF-THE ART IN COMPUTATIONAL ANALYSIS OF CAVITATION INCEPTION AND ITS SCALE EFFECTS\",\"authors\":\"E. Amromin\",\"doi\":\"10.5750/ijme.v164ia4.814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical analysis of cavitation inception is an important topic for naval engineering, but several circumstances make it difficult. First, cavitating flows are substantially multi-zone flows, where the appearing cavities are incomparably smaller than a cavitating body is. Second, inception is substantially influenced by characteristics of the inflow and of the body surfaces. Third, validation of employed mathematical methods by comparison with experimental data is a non-trivial task because of the complexity of experiments themselves and scale effects. This paper is emphasized on multi-zone quasi-steady approaches for prediction of cavitation inception and desinence numbers. The obtained computational results are compared with the known experimental data for sheet cavitation, vortex cavitation and cavitation behind surface irregularities. Procedures of scaling of cavitation inception number and the eventual combinations of various CFD solvers are also discussed.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v164ia4.814\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v164ia4.814","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
STATE-OF-THE ART IN COMPUTATIONAL ANALYSIS OF CAVITATION INCEPTION AND ITS SCALE EFFECTS
Mathematical analysis of cavitation inception is an important topic for naval engineering, but several circumstances make it difficult. First, cavitating flows are substantially multi-zone flows, where the appearing cavities are incomparably smaller than a cavitating body is. Second, inception is substantially influenced by characteristics of the inflow and of the body surfaces. Third, validation of employed mathematical methods by comparison with experimental data is a non-trivial task because of the complexity of experiments themselves and scale effects. This paper is emphasized on multi-zone quasi-steady approaches for prediction of cavitation inception and desinence numbers. The obtained computational results are compared with the known experimental data for sheet cavitation, vortex cavitation and cavitation behind surface irregularities. Procedures of scaling of cavitation inception number and the eventual combinations of various CFD solvers are also discussed.
期刊介绍:
The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.