非均质材料三维和三相热网络模型的涌现行为

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Jianhui Tian, Jialiang Wu, C. Bowen, Jinjuan Sun, Zaishuang Wang, G. Hu
{"title":"非均质材料三维和三相热网络模型的涌现行为","authors":"Jianhui Tian, Jialiang Wu, C. Bowen, Jinjuan Sun, Zaishuang Wang, G. Hu","doi":"10.1177/16878132231193206","DOIUrl":null,"url":null,"abstract":"The study of the heat transfer properties of heterogeneous materials has been a world-wide research focus, for example in sectors related to thermal management in aerospace, architecture, and geology. In this paper, the emergent behavior and thermal conduction characteristics of three-dimensional and three-phase heterogeneous materials thermal networks are studied using the finite element method. The results show that the existence of percolation paths of each phase has a strong impact on the effective properties of the network when the contrast in thermal conductivities of each phase is high, and percolation also affects the effective thermal conductivity of the whole thermal network system. However, when the contrast in thermal conductivity between the two phases is low, the thermal networks exhibit a more consistent and “emergent” behavior, and the effective thermal conductivity of thermal networks at the same volume fraction changes to a lower extent from network to network. This paper also demonstrates that a logarithmic mixing rule can predict the effective thermal conductivity in the low contrast emergent region in three-dimensional networks, and the modeling method provides new approaches for the design of multi-phase composites and prediction of their thermal conduction properties.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The emergent behavior of three-dimensional and three-phase thermal network model for the heterogeneous materials\",\"authors\":\"Jianhui Tian, Jialiang Wu, C. Bowen, Jinjuan Sun, Zaishuang Wang, G. Hu\",\"doi\":\"10.1177/16878132231193206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the heat transfer properties of heterogeneous materials has been a world-wide research focus, for example in sectors related to thermal management in aerospace, architecture, and geology. In this paper, the emergent behavior and thermal conduction characteristics of three-dimensional and three-phase heterogeneous materials thermal networks are studied using the finite element method. The results show that the existence of percolation paths of each phase has a strong impact on the effective properties of the network when the contrast in thermal conductivities of each phase is high, and percolation also affects the effective thermal conductivity of the whole thermal network system. However, when the contrast in thermal conductivity between the two phases is low, the thermal networks exhibit a more consistent and “emergent” behavior, and the effective thermal conductivity of thermal networks at the same volume fraction changes to a lower extent from network to network. This paper also demonstrates that a logarithmic mixing rule can predict the effective thermal conductivity in the low contrast emergent region in three-dimensional networks, and the modeling method provides new approaches for the design of multi-phase composites and prediction of their thermal conduction properties.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231193206\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231193206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

非均质材料的传热特性研究一直是世界范围内的研究热点,例如在航空航天、建筑和地质等领域的热管理。本文采用有限元方法研究了三维和三相非均质材料热网络的涌现行为和热传导特性。结果表明:当各相导热系数对比较大时,各相渗透路径的存在对网络的有效性能有较大的影响,渗透也会影响整个热网系统的有效导热系数。然而,当两相热导率对比较低时,热网络表现出更一致和“涌现”的行为,相同体积分数下的热网络的有效热导率在不同网络之间的变化程度较低。本文还证明了对数混合规则可以预测三维网络中低对比度紧急区域的有效导热系数,该建模方法为多相复合材料的设计和导热性能预测提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The emergent behavior of three-dimensional and three-phase thermal network model for the heterogeneous materials
The study of the heat transfer properties of heterogeneous materials has been a world-wide research focus, for example in sectors related to thermal management in aerospace, architecture, and geology. In this paper, the emergent behavior and thermal conduction characteristics of three-dimensional and three-phase heterogeneous materials thermal networks are studied using the finite element method. The results show that the existence of percolation paths of each phase has a strong impact on the effective properties of the network when the contrast in thermal conductivities of each phase is high, and percolation also affects the effective thermal conductivity of the whole thermal network system. However, when the contrast in thermal conductivity between the two phases is low, the thermal networks exhibit a more consistent and “emergent” behavior, and the effective thermal conductivity of thermal networks at the same volume fraction changes to a lower extent from network to network. This paper also demonstrates that a logarithmic mixing rule can predict the effective thermal conductivity in the low contrast emergent region in three-dimensional networks, and the modeling method provides new approaches for the design of multi-phase composites and prediction of their thermal conduction properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信