Lax–Wendroff和Beam–Warming方案的Green函数

Q4 Mathematics
J.-F. Coulombel
{"title":"Lax–Wendroff和Beam–Warming方案的Green函数","authors":"J.-F. Coulombel","doi":"10.5802/ambp.413","DOIUrl":null,"url":null,"abstract":"We prove a sharp uniform generalized Gaussian bound for the Green’s function of the Lax–Wendroff and Beam–Warming schemes. Our bound highlights the spatial region that leads to the well-known (rather weak) instability of these schemes in the maximum norm. We also recover uniform bounds in the maximum norm when these schemes are applied to initial data of bounded variation.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Green’s function of the Lax–Wendroff and Beam–Warming schemes\",\"authors\":\"J.-F. Coulombel\",\"doi\":\"10.5802/ambp.413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a sharp uniform generalized Gaussian bound for the Green’s function of the Lax–Wendroff and Beam–Warming schemes. Our bound highlights the spatial region that leads to the well-known (rather weak) instability of these schemes in the maximum norm. We also recover uniform bounds in the maximum norm when these schemes are applied to initial data of bounded variation.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了Lax–Wendroff和Beam–Warming格式的Green函数的一致广义高斯界。我们的边界强调了导致这些方案在最大范数中众所周知(相当弱)不稳定性的空间区域。当这些方案应用于有界变化的初始数据时,我们还恢复了最大范数的一致边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Green’s function of the Lax–Wendroff and Beam–Warming schemes
We prove a sharp uniform generalized Gaussian bound for the Green’s function of the Lax–Wendroff and Beam–Warming schemes. Our bound highlights the spatial region that leads to the well-known (rather weak) instability of these schemes in the maximum norm. We also recover uniform bounds in the maximum norm when these schemes are applied to initial data of bounded variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信