生物医学应用中碳纳米管的最新改进

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY
Mohd Hayrie Mohd Hatta, J. Matmin, N. F. Ghazalli, Mohamad Azani Abd Khadir Jalani, Faisal Hussin
{"title":"生物医学应用中碳纳米管的最新改进","authors":"Mohd Hayrie Mohd Hatta, J. Matmin, N. F. Ghazalli, Mohamad Azani Abd Khadir Jalani, Faisal Hussin","doi":"10.11113/jurnalteknologi.v85.19253","DOIUrl":null,"url":null,"abstract":"\n\n\n\nRecent advances in the field of biomedical have been remarkably achieved in the last few years, especially in the fabrication of nanomaterials that have various applications. Carbon nanotubes (CNTs) are carbon-based materials with cylindrical shapes that have an average diameter of less than 2 nanometre (nm) for single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) with average diameters up to 100 nm. CNTs demonstrate various outstanding and excellent mechanical, electrical, conductivity, thermal properties, high surface area, and high biocompatibility. These remarkable properties have led to the development of CNTs-based materials in the biomedical field. For the past decades, the functionalization of CNTs has been actively researched in order to increase their biocompatibility for application in antibacterial materials, dentistry, drug delivery, and biosensing. The surface functionalization enhances the capabilities, features, and properties by modifying the surface chemistry of CNTs to improve their biocompatibility. The functionalization of CNTs will enable the biomolecule loading on the surface of CNTs, and thus can be used for drug delivery for targeted cells or immobilization support. In this review, we discuss the related literatures on biomedical applications of CNTs such as antibacterial, dental materials, cancer therapy and biosensors from 2007 – 2022. We also review the antibacterial properties between SWCNTs and MWCNTs, functionalized CNTs-reinforced nanocomposite for dental applications, and the ability of CNTs to work as nanocarriers to deliver drugs directly to cancer cells. Moreover, the applications of CNTs-based biosensors in detecting biological and biomedical compounds are also discussed. \n\n\n\n","PeriodicalId":47541,"journal":{"name":"Jurnal Teknologi-Sciences & Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RECENT MODIFICATIONS OF CARBON NANOTUBES FOR BIOMEDICAL APPLICATIONS\",\"authors\":\"Mohd Hayrie Mohd Hatta, J. Matmin, N. F. Ghazalli, Mohamad Azani Abd Khadir Jalani, Faisal Hussin\",\"doi\":\"10.11113/jurnalteknologi.v85.19253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\nRecent advances in the field of biomedical have been remarkably achieved in the last few years, especially in the fabrication of nanomaterials that have various applications. Carbon nanotubes (CNTs) are carbon-based materials with cylindrical shapes that have an average diameter of less than 2 nanometre (nm) for single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) with average diameters up to 100 nm. CNTs demonstrate various outstanding and excellent mechanical, electrical, conductivity, thermal properties, high surface area, and high biocompatibility. These remarkable properties have led to the development of CNTs-based materials in the biomedical field. For the past decades, the functionalization of CNTs has been actively researched in order to increase their biocompatibility for application in antibacterial materials, dentistry, drug delivery, and biosensing. The surface functionalization enhances the capabilities, features, and properties by modifying the surface chemistry of CNTs to improve their biocompatibility. The functionalization of CNTs will enable the biomolecule loading on the surface of CNTs, and thus can be used for drug delivery for targeted cells or immobilization support. In this review, we discuss the related literatures on biomedical applications of CNTs such as antibacterial, dental materials, cancer therapy and biosensors from 2007 – 2022. We also review the antibacterial properties between SWCNTs and MWCNTs, functionalized CNTs-reinforced nanocomposite for dental applications, and the ability of CNTs to work as nanocarriers to deliver drugs directly to cancer cells. Moreover, the applications of CNTs-based biosensors in detecting biological and biomedical compounds are also discussed. \\n\\n\\n\\n\",\"PeriodicalId\":47541,\"journal\":{\"name\":\"Jurnal Teknologi-Sciences & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi-Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/jurnalteknologi.v85.19253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi-Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v85.19253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几年里,生物医学领域取得了显著的进展,特别是在具有各种应用的纳米材料的制造方面。碳纳米管(CNT)是具有圆柱形状的碳基材料,对于平均直径高达100nm的单壁CNT(SWCNT)和多壁CNT,其平均直径小于2纳米(nm)。CNT表现出各种优异的机械、电学、导电性、热性能、高表面积和高生物相容性。这些显著的性能导致了CNTs基材料在生物医学领域的发展。在过去的几十年里,人们一直在积极研究碳纳米管的功能化,以提高其在抗菌材料、牙科、药物递送和生物传感中的应用的生物相容性。表面功能化通过改变CNT的表面化学性质来提高其生物相容性,从而增强其能力、特征和性能。CNT的功能化将使生物分子能够负载在CNT的表面上,因此可以用于靶向细胞或固定化支持物的药物递送。在这篇综述中,我们讨论了2007-2022年CNT生物医学应用的相关文献,如抗菌、牙科材料、癌症治疗和生物传感器。我们还综述了SWCNT和MWCNT之间的抗菌性能、用于牙科应用的功能化CNTs增强纳米复合材料,以及CNT作为纳米载体直接向癌症细胞递送药物的能力。此外,还讨论了基于碳纳米管的生物传感器在检测生物和生物医学化合物方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RECENT MODIFICATIONS OF CARBON NANOTUBES FOR BIOMEDICAL APPLICATIONS
Recent advances in the field of biomedical have been remarkably achieved in the last few years, especially in the fabrication of nanomaterials that have various applications. Carbon nanotubes (CNTs) are carbon-based materials with cylindrical shapes that have an average diameter of less than 2 nanometre (nm) for single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) with average diameters up to 100 nm. CNTs demonstrate various outstanding and excellent mechanical, electrical, conductivity, thermal properties, high surface area, and high biocompatibility. These remarkable properties have led to the development of CNTs-based materials in the biomedical field. For the past decades, the functionalization of CNTs has been actively researched in order to increase their biocompatibility for application in antibacterial materials, dentistry, drug delivery, and biosensing. The surface functionalization enhances the capabilities, features, and properties by modifying the surface chemistry of CNTs to improve their biocompatibility. The functionalization of CNTs will enable the biomolecule loading on the surface of CNTs, and thus can be used for drug delivery for targeted cells or immobilization support. In this review, we discuss the related literatures on biomedical applications of CNTs such as antibacterial, dental materials, cancer therapy and biosensors from 2007 – 2022. We also review the antibacterial properties between SWCNTs and MWCNTs, functionalized CNTs-reinforced nanocomposite for dental applications, and the ability of CNTs to work as nanocarriers to deliver drugs directly to cancer cells. Moreover, the applications of CNTs-based biosensors in detecting biological and biomedical compounds are also discussed. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jurnal Teknologi-Sciences & Engineering
Jurnal Teknologi-Sciences & Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
0.00%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信