A. Farji-Brener, Débora Elías Díaz, Isabelle Holanda, Andrés Sierra Ricaurte, Kenneth Barrantes, Pablo José Gutiérrez-Campos
{"title":"在黑莓(Rubus adenotrichos)中,叶片间棘突的变化支持了最佳防御假说。","authors":"A. Farji-Brener, Débora Elías Díaz, Isabelle Holanda, Andrés Sierra Ricaurte, Kenneth Barrantes, Pablo José Gutiérrez-Campos","doi":"10.1017/S0266467423000202","DOIUrl":null,"url":null,"abstract":"Abstract Hypotheses based on allocation theory and herbivore selection offer opposite predictions about how defence levels against herbivores change as the plant tissue grows. The growth differentiation balance hypothesis (GDBH) assumes that defences will be resource-limited in immature tissues and predict that defence levels increase as the plant tissue grows. Conversely, the optimal defence hypothesis (ODH) proposes that plants would have the highest level of defences in the parts that have the highest value in terms of fitness and/or are more frequently attacked by herbivores, such as young tissues. We examine whether spinescence in the shrub Rubus adenotrichos (blackberry) change as the leaf grows, and if this change is consistent with the GDBH or the ODH. We compare the petiole area occupied by prickles, the prickles density and the individual prickle area in mature versus young petioles from Rubus adenotrichos. Our results show that, in R. adenotrichos, young tissues are more protected than mature tissues. Prickles density and the petiole area occupied by prickles were up to 25% higher in young petioles than in mature ones. These results support the ODH, reinforcing the idea that extrinsic factors such as herbivores pressure might drive the change of structural defences level across leaf ontogeny.","PeriodicalId":49968,"journal":{"name":"Journal of Tropical Ecology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in spinescence across leaf ontogeny support the optimal defence hypothesis in blackberries (Rubus adenotrichos)\",\"authors\":\"A. Farji-Brener, Débora Elías Díaz, Isabelle Holanda, Andrés Sierra Ricaurte, Kenneth Barrantes, Pablo José Gutiérrez-Campos\",\"doi\":\"10.1017/S0266467423000202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hypotheses based on allocation theory and herbivore selection offer opposite predictions about how defence levels against herbivores change as the plant tissue grows. The growth differentiation balance hypothesis (GDBH) assumes that defences will be resource-limited in immature tissues and predict that defence levels increase as the plant tissue grows. Conversely, the optimal defence hypothesis (ODH) proposes that plants would have the highest level of defences in the parts that have the highest value in terms of fitness and/or are more frequently attacked by herbivores, such as young tissues. We examine whether spinescence in the shrub Rubus adenotrichos (blackberry) change as the leaf grows, and if this change is consistent with the GDBH or the ODH. We compare the petiole area occupied by prickles, the prickles density and the individual prickle area in mature versus young petioles from Rubus adenotrichos. Our results show that, in R. adenotrichos, young tissues are more protected than mature tissues. Prickles density and the petiole area occupied by prickles were up to 25% higher in young petioles than in mature ones. These results support the ODH, reinforcing the idea that extrinsic factors such as herbivores pressure might drive the change of structural defences level across leaf ontogeny.\",\"PeriodicalId\":49968,\"journal\":{\"name\":\"Journal of Tropical Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tropical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1017/S0266467423000202\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/S0266467423000202","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Changes in spinescence across leaf ontogeny support the optimal defence hypothesis in blackberries (Rubus adenotrichos)
Abstract Hypotheses based on allocation theory and herbivore selection offer opposite predictions about how defence levels against herbivores change as the plant tissue grows. The growth differentiation balance hypothesis (GDBH) assumes that defences will be resource-limited in immature tissues and predict that defence levels increase as the plant tissue grows. Conversely, the optimal defence hypothesis (ODH) proposes that plants would have the highest level of defences in the parts that have the highest value in terms of fitness and/or are more frequently attacked by herbivores, such as young tissues. We examine whether spinescence in the shrub Rubus adenotrichos (blackberry) change as the leaf grows, and if this change is consistent with the GDBH or the ODH. We compare the petiole area occupied by prickles, the prickles density and the individual prickle area in mature versus young petioles from Rubus adenotrichos. Our results show that, in R. adenotrichos, young tissues are more protected than mature tissues. Prickles density and the petiole area occupied by prickles were up to 25% higher in young petioles than in mature ones. These results support the ODH, reinforcing the idea that extrinsic factors such as herbivores pressure might drive the change of structural defences level across leaf ontogeny.
期刊介绍:
Journal of Tropical Ecology aims to address topics of general relevance and significance to tropical ecology. This includes sub-disciplines of ecology, such as conservation biology, evolutionary ecology, marine ecology, microbial ecology, molecular ecology, quantitative ecology, etc. Studies in the field of tropical medicine, specifically where it involves ecological surroundings (e.g., zoonotic or vector-borne disease ecology), are also suitable. We also welcome methods papers, provided that the techniques are well-described and are of broad general utility.
Please keep in mind that studies focused on specific geographic regions or on particular taxa will be better suited to more specialist journals. In order to help the editors make their decision, in your cover letter please address the specific hypothesis your study addresses, and how the results will interest the broad field of tropical ecology. While we will consider purely descriptive studies of outstanding general interest, the case for them should be made in the cover letter.