排列柱状图上的组合参数

IF 0.6 Q3 MATHEMATICS
T. Mansour, M. Shattuck
{"title":"排列柱状图上的组合参数","authors":"T. Mansour, M. Shattuck","doi":"10.22108/TOC.2017.102359.1483","DOIUrl":null,"url":null,"abstract":"‎In this paper‎, ‎we consider statistics on permutations of length $n$ represented geometrically as bargraphs having the same number of horizontal steps‎. ‎More precisely‎, ‎we find the joint distribution of the descent and up step statistics on the bargraph representations‎, ‎thereby obtaining a new refined count of permutations of a given length‎. ‎To do so‎, ‎we consider the distribution of the parameters on permutations of a more general multiset of which $mathcal{S}_n$ is a subset‎. ‎In addition to finding an explicit formula for the joint distribution on this multiset‎, ‎we provide counts for the total number of descents and up steps of all its members‎, ‎supplying both algebraic and combinatorial proofs‎. ‎Finally‎, ‎we derive explicit expressions for the sign balance of these statistics‎, ‎from which the comparable results on permutations follow as special cases‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"7 1","pages":"1-16"},"PeriodicalIF":0.6000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Combinatorial parameters on bargraphs of permutations\",\"authors\":\"T. Mansour, M. Shattuck\",\"doi\":\"10.22108/TOC.2017.102359.1483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎In this paper‎, ‎we consider statistics on permutations of length $n$ represented geometrically as bargraphs having the same number of horizontal steps‎. ‎More precisely‎, ‎we find the joint distribution of the descent and up step statistics on the bargraph representations‎, ‎thereby obtaining a new refined count of permutations of a given length‎. ‎To do so‎, ‎we consider the distribution of the parameters on permutations of a more general multiset of which $mathcal{S}_n$ is a subset‎. ‎In addition to finding an explicit formula for the joint distribution on this multiset‎, ‎we provide counts for the total number of descents and up steps of all its members‎, ‎supplying both algebraic and combinatorial proofs‎. ‎Finally‎, ‎we derive explicit expressions for the sign balance of these statistics‎, ‎from which the comparable results on permutations follow as special cases‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"7 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.102359.1483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.102359.1483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们考虑长度$n$排列的统计量,以几何形式表示为具有相同水平步数的柱状图。更准确地说,我们找到了柱状图表示上下降和上升统计量的联合分布,从而获得了给定长度的新的精确排列计数。为了做到这一点,我们考虑一个更一般的多集的参数在排列上的分布,其中$mathcal{S}_n$是一个子集。除了找到这个多集上的联合分布的显式公式外,我们还提供了其所有成员的下降和上升阶梯的总数,并提供了代数和组合证明。最后,我们推导出这些统计量的符号平衡的显式表达式,由此得出排列的可比较结果作为特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial parameters on bargraphs of permutations
‎In this paper‎, ‎we consider statistics on permutations of length $n$ represented geometrically as bargraphs having the same number of horizontal steps‎. ‎More precisely‎, ‎we find the joint distribution of the descent and up step statistics on the bargraph representations‎, ‎thereby obtaining a new refined count of permutations of a given length‎. ‎To do so‎, ‎we consider the distribution of the parameters on permutations of a more general multiset of which $mathcal{S}_n$ is a subset‎. ‎In addition to finding an explicit formula for the joint distribution on this multiset‎, ‎we provide counts for the total number of descents and up steps of all its members‎, ‎supplying both algebraic and combinatorial proofs‎. ‎Finally‎, ‎we derive explicit expressions for the sign balance of these statistics‎, ‎from which the comparable results on permutations follow as special cases‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信