{"title":"混沌吸引子的边界碰撞分岔能导致其膨胀吗?","authors":"V. Avrutin, Anastasiia Panchuk, I. Sushko","doi":"10.1098/rspa.2023.0260","DOIUrl":null,"url":null,"abstract":"Recently, we reported that a chaotic attractor in a discontinuous one-dimensional map may undergo a so-called exterior border collision bifurcation, which causes additional bands of the attractor to appear. In the present paper, we suppose that the chaotic attractor’s basin boundary contains a chaotic repeller, and discuss a bifurcation pattern consisting of an exterior border collision bifurcation and an expansion bifurcation (interior crisis). In the generic case, where neither the border point the chaotic attractor collides with, nor any of its images belong to the chaotic repeller, the exterior border collision bifurcation is followed by the expansion bifurcation, and the distance between both bifurcations may be arbitrarily small but positive. In the non-generic (codimension-2) case, these bifurcations occur simultaneously, so that a border collision bifurcation of a chaotic attractor leads directly to its expansion.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can a border collision bifurcation of a chaotic attractor lead to its expansion?\",\"authors\":\"V. Avrutin, Anastasiia Panchuk, I. Sushko\",\"doi\":\"10.1098/rspa.2023.0260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, we reported that a chaotic attractor in a discontinuous one-dimensional map may undergo a so-called exterior border collision bifurcation, which causes additional bands of the attractor to appear. In the present paper, we suppose that the chaotic attractor’s basin boundary contains a chaotic repeller, and discuss a bifurcation pattern consisting of an exterior border collision bifurcation and an expansion bifurcation (interior crisis). In the generic case, where neither the border point the chaotic attractor collides with, nor any of its images belong to the chaotic repeller, the exterior border collision bifurcation is followed by the expansion bifurcation, and the distance between both bifurcations may be arbitrarily small but positive. In the non-generic (codimension-2) case, these bifurcations occur simultaneously, so that a border collision bifurcation of a chaotic attractor leads directly to its expansion.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0260\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0260","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Can a border collision bifurcation of a chaotic attractor lead to its expansion?
Recently, we reported that a chaotic attractor in a discontinuous one-dimensional map may undergo a so-called exterior border collision bifurcation, which causes additional bands of the attractor to appear. In the present paper, we suppose that the chaotic attractor’s basin boundary contains a chaotic repeller, and discuss a bifurcation pattern consisting of an exterior border collision bifurcation and an expansion bifurcation (interior crisis). In the generic case, where neither the border point the chaotic attractor collides with, nor any of its images belong to the chaotic repeller, the exterior border collision bifurcation is followed by the expansion bifurcation, and the distance between both bifurcations may be arbitrarily small but positive. In the non-generic (codimension-2) case, these bifurcations occur simultaneously, so that a border collision bifurcation of a chaotic attractor leads directly to its expansion.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.