Biqiang Sun, Zhi-qing He, Gan Liu, Xiao-juan Fu, Zhi-yang Chen, Guoli Li
{"title":"亚甲基四氢叶酸脱氢酶2 (MTHFD2)在头颈部鳞状细胞癌(HNSCC)中过表达并与患者预后不良相关","authors":"Biqiang Sun, Zhi-qing He, Gan Liu, Xiao-juan Fu, Zhi-yang Chen, Guoli Li","doi":"10.1515/pteridines-2020-0033","DOIUrl":null,"url":null,"abstract":"Abstract Objective To investigate methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) expression, biological function, and correlation with head and neck squamous cell carcinoma (HNSCC) patient’s prognosis. Methods The relative expression levels of MTHFD2 gene mRNA in tumor tissues of HNSCC and adjacent normal tissues were analyzed in the Cancer Genome Atlas and oncomine database. MTHFD2 protein relative expression in tumor tissue of HNSCC patients was analyzed in human proteome database. Protein–protein interaction (PPI) network of MTHFD2 and correlated genes were constructed in STRING database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway of MTHFD2 and relevant proteins involved in the PPI network was enriched. The Tumor Immune Estimation Resource database was used to analyze the relationship between MTHFD2 expression and immune infiltration. Overall survival (OS) and progression-free survival (PFS) for MTHFD2 high and low expression groups were investigated in the Kaplan–Meier Plotter database. Results In HNSCC, MTHFD2 mRNA relative expression level in tumor tissue was significantly higher than the corresponding normal tissue with statistical difference (p < 0.05). In the PPI network, 21 protein coding genes were involved in the network with 124 edges, which indicated that the enrichment was significant (p < 0.05). MTHFD2 and PPI network involved genes were mainly enriched in tetrahydrofolate metabolic process, one-carbon metabolic process biological process. In KEGG pathway, MTHFD2 and PPI network involved genes were mainly enriched in one-carbon pool by folate, metabolic pathways, glyoxylate, and dicarboxylate metabolism, and carbon metabolism. The relative expression level of MTHFD2 gene was correlated with immune infiltration of macrophage (r = 0.712, p < 0.05), neutrophil (r = 0.158, p < 0.05), dendritic cell (r = 0.1825, p < 0.05), and CD4+ T lymph cell (r = 0.1825, p < 0.05). HNSCC patients with high expression MTHFD2 had low OS compared to low expression cases (hazard ratio = 1.53, 95% CI: 1.16–2.02, p < 0.05). Conclusion MTHFD2 is overexpressed in HNSCC and correlated with patient’s prognosis. MTHFD2 maybe a potential target for HNSCC target treatment and provides a possible direction for the research and development of related targeted drugs.","PeriodicalId":20792,"journal":{"name":"Pteridines","volume":"32 1","pages":"98 - 105"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) is overexpressed in head and neck squamous cell carcinoma (HNSCC) and correlated with patient’s poor prognosis\",\"authors\":\"Biqiang Sun, Zhi-qing He, Gan Liu, Xiao-juan Fu, Zhi-yang Chen, Guoli Li\",\"doi\":\"10.1515/pteridines-2020-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objective To investigate methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) expression, biological function, and correlation with head and neck squamous cell carcinoma (HNSCC) patient’s prognosis. Methods The relative expression levels of MTHFD2 gene mRNA in tumor tissues of HNSCC and adjacent normal tissues were analyzed in the Cancer Genome Atlas and oncomine database. MTHFD2 protein relative expression in tumor tissue of HNSCC patients was analyzed in human proteome database. Protein–protein interaction (PPI) network of MTHFD2 and correlated genes were constructed in STRING database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway of MTHFD2 and relevant proteins involved in the PPI network was enriched. The Tumor Immune Estimation Resource database was used to analyze the relationship between MTHFD2 expression and immune infiltration. Overall survival (OS) and progression-free survival (PFS) for MTHFD2 high and low expression groups were investigated in the Kaplan–Meier Plotter database. Results In HNSCC, MTHFD2 mRNA relative expression level in tumor tissue was significantly higher than the corresponding normal tissue with statistical difference (p < 0.05). In the PPI network, 21 protein coding genes were involved in the network with 124 edges, which indicated that the enrichment was significant (p < 0.05). MTHFD2 and PPI network involved genes were mainly enriched in tetrahydrofolate metabolic process, one-carbon metabolic process biological process. In KEGG pathway, MTHFD2 and PPI network involved genes were mainly enriched in one-carbon pool by folate, metabolic pathways, glyoxylate, and dicarboxylate metabolism, and carbon metabolism. The relative expression level of MTHFD2 gene was correlated with immune infiltration of macrophage (r = 0.712, p < 0.05), neutrophil (r = 0.158, p < 0.05), dendritic cell (r = 0.1825, p < 0.05), and CD4+ T lymph cell (r = 0.1825, p < 0.05). HNSCC patients with high expression MTHFD2 had low OS compared to low expression cases (hazard ratio = 1.53, 95% CI: 1.16–2.02, p < 0.05). Conclusion MTHFD2 is overexpressed in HNSCC and correlated with patient’s prognosis. MTHFD2 maybe a potential target for HNSCC target treatment and provides a possible direction for the research and development of related targeted drugs.\",\"PeriodicalId\":20792,\"journal\":{\"name\":\"Pteridines\",\"volume\":\"32 1\",\"pages\":\"98 - 105\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pteridines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/pteridines-2020-0033\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pteridines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/pteridines-2020-0033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) is overexpressed in head and neck squamous cell carcinoma (HNSCC) and correlated with patient’s poor prognosis
Abstract Objective To investigate methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) expression, biological function, and correlation with head and neck squamous cell carcinoma (HNSCC) patient’s prognosis. Methods The relative expression levels of MTHFD2 gene mRNA in tumor tissues of HNSCC and adjacent normal tissues were analyzed in the Cancer Genome Atlas and oncomine database. MTHFD2 protein relative expression in tumor tissue of HNSCC patients was analyzed in human proteome database. Protein–protein interaction (PPI) network of MTHFD2 and correlated genes were constructed in STRING database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway of MTHFD2 and relevant proteins involved in the PPI network was enriched. The Tumor Immune Estimation Resource database was used to analyze the relationship between MTHFD2 expression and immune infiltration. Overall survival (OS) and progression-free survival (PFS) for MTHFD2 high and low expression groups were investigated in the Kaplan–Meier Plotter database. Results In HNSCC, MTHFD2 mRNA relative expression level in tumor tissue was significantly higher than the corresponding normal tissue with statistical difference (p < 0.05). In the PPI network, 21 protein coding genes were involved in the network with 124 edges, which indicated that the enrichment was significant (p < 0.05). MTHFD2 and PPI network involved genes were mainly enriched in tetrahydrofolate metabolic process, one-carbon metabolic process biological process. In KEGG pathway, MTHFD2 and PPI network involved genes were mainly enriched in one-carbon pool by folate, metabolic pathways, glyoxylate, and dicarboxylate metabolism, and carbon metabolism. The relative expression level of MTHFD2 gene was correlated with immune infiltration of macrophage (r = 0.712, p < 0.05), neutrophil (r = 0.158, p < 0.05), dendritic cell (r = 0.1825, p < 0.05), and CD4+ T lymph cell (r = 0.1825, p < 0.05). HNSCC patients with high expression MTHFD2 had low OS compared to low expression cases (hazard ratio = 1.53, 95% CI: 1.16–2.02, p < 0.05). Conclusion MTHFD2 is overexpressed in HNSCC and correlated with patient’s prognosis. MTHFD2 maybe a potential target for HNSCC target treatment and provides a possible direction for the research and development of related targeted drugs.
期刊介绍:
Pteridines is an open acess international quarterly journal dealing with all aspects of pteridine research. Pteridines are heterocyclic fused ring compounds involved in a wide range of biological functions from the color on butterfly wings to cofactors in enzyme catalysis to essential vitamins. Of the pteridines, 5,6,7,8-tetrahydrobiopterin is the necessary cofactor of several aromatic amino acid monoxygenases, the nitric oxide synthases and glyceryl ether monoxygenase (GEMO). Neopterin plays an essential role in the immune system and is an important biomarker in laboratory medicine for diseases such as HIV, cardiovascular disease, malignant tumors, among others.
Topics:
-Neopterin, dihydroneopterin, monapterin-
Biopterin, tetrahydrobiopterin-
Folates, antifolates, riboflavin-
Phenylalanine, tyrosine, phenylketonuria, serotonin, adrenalin, noradrenalin, L-DOPA, dopamine, related biogenic amines-
Phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase, nitric oxide synthases (iNOS), alkylglycerol monooxygenase (AGMO), dihydropterin reductase, sepiapterin reductase-
Homocysteine, mediators of inflammation, redox systems, iron.