LEBESGUE密度与统计收敛

IF 0.1 Q4 MATHEMATICS
Marek Bienias, S. Gła̧b
{"title":"LEBESGUE密度与统计收敛","authors":"Marek Bienias, S. Gła̧b","doi":"10.14321/REALANALEXCH.46.2.0495","DOIUrl":null,"url":null,"abstract":"The paper presents a generalization of the density point’s notion to the ideal-convergence framework. For an ideal I⊆P(ℕ) (with Fin⊆I), Lebesgue measurable set A⊆ℝ we introduce a definition of a density point of A with respect to I; we prove that the classical approach fits into this generalization (Theorem 4); we construct a family of Cantorlike sets showing that Lebesgue Density Theorem cannot be maximally improved in this direction (Theorem 8).","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LEBESGUE DENSITY AND STATISTICAL CONVERGENCE\",\"authors\":\"Marek Bienias, S. Gła̧b\",\"doi\":\"10.14321/REALANALEXCH.46.2.0495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a generalization of the density point’s notion to the ideal-convergence framework. For an ideal I⊆P(ℕ) (with Fin⊆I), Lebesgue measurable set A⊆ℝ we introduce a definition of a density point of A with respect to I; we prove that the classical approach fits into this generalization (Theorem 4); we construct a family of Cantorlike sets showing that Lebesgue Density Theorem cannot be maximally improved in this direction (Theorem 8).\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/REALANALEXCH.46.2.0495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/REALANALEXCH.46.2.0495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将密度点的概念推广到理想收敛框架。对于理想I⊆P(ℕ) (与Fin⊆I),Lebesgue可测集A \8838ℝ 我们引入了a关于I的密度点的定义;我们证明了经典方法符合这一推广(定理4);我们构造了一个Cantorlike集合族,表明Lebesgue密度定理不能在这个方向上得到最大改进(定理8)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LEBESGUE DENSITY AND STATISTICAL CONVERGENCE
The paper presents a generalization of the density point’s notion to the ideal-convergence framework. For an ideal I⊆P(ℕ) (with Fin⊆I), Lebesgue measurable set A⊆ℝ we introduce a definition of a density point of A with respect to I; we prove that the classical approach fits into this generalization (Theorem 4); we construct a family of Cantorlike sets showing that Lebesgue Density Theorem cannot be maximally improved in this direction (Theorem 8).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信