Dipanjana Dhar, D. Dey, Soumalee Basu, H. Fortunato
{"title":"潮间带石鳖线粒体基因组适应性进化研究","authors":"Dipanjana Dhar, D. Dey, Soumalee Basu, H. Fortunato","doi":"10.1093/MOLLUS/EYAB018","DOIUrl":null,"url":null,"abstract":"\n The intertidal zone is one of the most stressful environments, with extreme shifts in temperature, salinity, pH and oxygen concentration. Marine molluscs, particularly chitons that belong to the category of ecologically significant organisms, survive in this extreme environment, and are ideal systems for studying stress adaptation. Mitochondria are known to be critical for energy homeostasis, and changes in environmental factors result in their dysfunction and consequent injury to the organism. Intertidal organisms are exception in this respect because they are capable of maintaining mitochondrial integrity. Here, we used mitochondrial genetic components from seven chitons of the intertidal zone to infer phylogenetic relationships. Selection analyses on individual protein-coding genes (PCGs) were performed to identify and map potentially adaptive residues in the modelled structures of the mitochondrial respiratory chain complexes. The results showed significant amino acid changes in sites under diversifying selection for all the PCGs, indicating that the mitochondrial genome in chitons is undergoing adaptive evolution. Such sites were observed in the proton pump as well as in the translocation channel of the transmembrane helices and the surrounding loop regions, thus implying functional modification of the mitochondrial proteins essential for survival in the dynamic environment of the intertidal zone.","PeriodicalId":50126,"journal":{"name":"Journal of Molluscan Studies","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/MOLLUS/EYAB018","citationCount":"2","resultStr":"{\"title\":\"Insight into the adaptive evolution of mitochondrial genomes in intertidal chitons\",\"authors\":\"Dipanjana Dhar, D. Dey, Soumalee Basu, H. Fortunato\",\"doi\":\"10.1093/MOLLUS/EYAB018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The intertidal zone is one of the most stressful environments, with extreme shifts in temperature, salinity, pH and oxygen concentration. Marine molluscs, particularly chitons that belong to the category of ecologically significant organisms, survive in this extreme environment, and are ideal systems for studying stress adaptation. Mitochondria are known to be critical for energy homeostasis, and changes in environmental factors result in their dysfunction and consequent injury to the organism. Intertidal organisms are exception in this respect because they are capable of maintaining mitochondrial integrity. Here, we used mitochondrial genetic components from seven chitons of the intertidal zone to infer phylogenetic relationships. Selection analyses on individual protein-coding genes (PCGs) were performed to identify and map potentially adaptive residues in the modelled structures of the mitochondrial respiratory chain complexes. The results showed significant amino acid changes in sites under diversifying selection for all the PCGs, indicating that the mitochondrial genome in chitons is undergoing adaptive evolution. Such sites were observed in the proton pump as well as in the translocation channel of the transmembrane helices and the surrounding loop regions, thus implying functional modification of the mitochondrial proteins essential for survival in the dynamic environment of the intertidal zone.\",\"PeriodicalId\":50126,\"journal\":{\"name\":\"Journal of Molluscan Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/MOLLUS/EYAB018\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molluscan Studies\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/MOLLUS/EYAB018\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molluscan Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/MOLLUS/EYAB018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Insight into the adaptive evolution of mitochondrial genomes in intertidal chitons
The intertidal zone is one of the most stressful environments, with extreme shifts in temperature, salinity, pH and oxygen concentration. Marine molluscs, particularly chitons that belong to the category of ecologically significant organisms, survive in this extreme environment, and are ideal systems for studying stress adaptation. Mitochondria are known to be critical for energy homeostasis, and changes in environmental factors result in their dysfunction and consequent injury to the organism. Intertidal organisms are exception in this respect because they are capable of maintaining mitochondrial integrity. Here, we used mitochondrial genetic components from seven chitons of the intertidal zone to infer phylogenetic relationships. Selection analyses on individual protein-coding genes (PCGs) were performed to identify and map potentially adaptive residues in the modelled structures of the mitochondrial respiratory chain complexes. The results showed significant amino acid changes in sites under diversifying selection for all the PCGs, indicating that the mitochondrial genome in chitons is undergoing adaptive evolution. Such sites were observed in the proton pump as well as in the translocation channel of the transmembrane helices and the surrounding loop regions, thus implying functional modification of the mitochondrial proteins essential for survival in the dynamic environment of the intertidal zone.
期刊介绍:
The Journal of Molluscan Studies accepts papers on all aspects of the study of molluscs. These include systematics, molecular genetics, palaeontology, ecology, evolution, and physiology. Where the topic is in a specialized field (e.g. parasitology, neurobiology, biochemistry, molecular biology), submissions will still be accepted as long as the mollusc is the principal focus of the study, and not incidental or simply a convenient experimental animal. Papers with a focus on fisheries biology, aquaculture, and control of molluscan pests will be accepted only if they include significant advances in molluscan biology. While systematic papers are encouraged, descriptions of single new taxa will only be considered if they include some ‘added value’, for example in the form of new information on anatomy or distribution, or if they are presented in the context of a systematic revision or phylogenetic analysis of the group.