Raymundo Guzmán Gil, Oscar Manuel González Brambila, Hugo Velasco Bedrán, J. C. García Martínez, José Antonio Colín Luna, M. M. González Brambila
{"title":"朱砂比重瓶胞外活性对木质素的解聚,获得纤维素","authors":"Raymundo Guzmán Gil, Oscar Manuel González Brambila, Hugo Velasco Bedrán, J. C. García Martínez, José Antonio Colín Luna, M. M. González Brambila","doi":"10.1515/ijcre-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract Cellulose can be used to produce biofuels and many other products like pharmaceutical goods, food supplements, cosmetics, bio-plastics, etc. Lignocellulosic materials, like O. ficus indica residuals, are a heterogeneous biopolymer formed mainly by lignin, hemicellulose and cellulose. Lignin provides protection to the plants against chemical and microbial degradation, but it can be degraded by white rot fungi species, like Pycnoporus cinnabarinus. Since cellulose molecules are arranged in regular bundles enveloped by hemicellulose and lignin molecules, it is necessary to brake lignin and hemicellulose molecules to recover cellulose for its use in bioprocess. In this work, a biotechnological process for cellulose recovery from cactus waste through depolymerization of lignin by P. cinnabarinus, is presented. The delignification is carried out by aerobic culture in batch stirred bioreactors, with a liquid culture medium enriched with nutrients and minerals with O. ficus indica residuals as the unique carbon source, during eight-day span under continuous feeding of oxygen. A factorial design of experiments (DOE) for eight sets of factor values was selected for this study. The factors were: particle size, pH level, and process temperature. For each experiment, biomass, total reducing carbohydrates (TRC) and dissolved oxygen (DO) concentrations were measured every 24 h. At the end of each experiment, the percentage of delignification, and cellulose recovery was measured by Infrared (IR) spectroscopy. Up to 67% of delignification and 22% of cellulose recovery were obtained by the process. These results were analyzed by a factorial DOE in order to maximize each response individually and to optimize both responses together. The delignification of Opuntia ficus indica thorns has not been previously reported to our knowledge.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"445 - 460"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depolymerization of lignin by extracellular activity of Pycnoporus cinnabarinus, to obtain cellulose\",\"authors\":\"Raymundo Guzmán Gil, Oscar Manuel González Brambila, Hugo Velasco Bedrán, J. C. García Martínez, José Antonio Colín Luna, M. M. González Brambila\",\"doi\":\"10.1515/ijcre-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cellulose can be used to produce biofuels and many other products like pharmaceutical goods, food supplements, cosmetics, bio-plastics, etc. Lignocellulosic materials, like O. ficus indica residuals, are a heterogeneous biopolymer formed mainly by lignin, hemicellulose and cellulose. Lignin provides protection to the plants against chemical and microbial degradation, but it can be degraded by white rot fungi species, like Pycnoporus cinnabarinus. Since cellulose molecules are arranged in regular bundles enveloped by hemicellulose and lignin molecules, it is necessary to brake lignin and hemicellulose molecules to recover cellulose for its use in bioprocess. In this work, a biotechnological process for cellulose recovery from cactus waste through depolymerization of lignin by P. cinnabarinus, is presented. The delignification is carried out by aerobic culture in batch stirred bioreactors, with a liquid culture medium enriched with nutrients and minerals with O. ficus indica residuals as the unique carbon source, during eight-day span under continuous feeding of oxygen. A factorial design of experiments (DOE) for eight sets of factor values was selected for this study. The factors were: particle size, pH level, and process temperature. For each experiment, biomass, total reducing carbohydrates (TRC) and dissolved oxygen (DO) concentrations were measured every 24 h. At the end of each experiment, the percentage of delignification, and cellulose recovery was measured by Infrared (IR) spectroscopy. Up to 67% of delignification and 22% of cellulose recovery were obtained by the process. These results were analyzed by a factorial DOE in order to maximize each response individually and to optimize both responses together. The delignification of Opuntia ficus indica thorns has not been previously reported to our knowledge.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"21 1\",\"pages\":\"445 - 460\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0037\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Depolymerization of lignin by extracellular activity of Pycnoporus cinnabarinus, to obtain cellulose
Abstract Cellulose can be used to produce biofuels and many other products like pharmaceutical goods, food supplements, cosmetics, bio-plastics, etc. Lignocellulosic materials, like O. ficus indica residuals, are a heterogeneous biopolymer formed mainly by lignin, hemicellulose and cellulose. Lignin provides protection to the plants against chemical and microbial degradation, but it can be degraded by white rot fungi species, like Pycnoporus cinnabarinus. Since cellulose molecules are arranged in regular bundles enveloped by hemicellulose and lignin molecules, it is necessary to brake lignin and hemicellulose molecules to recover cellulose for its use in bioprocess. In this work, a biotechnological process for cellulose recovery from cactus waste through depolymerization of lignin by P. cinnabarinus, is presented. The delignification is carried out by aerobic culture in batch stirred bioreactors, with a liquid culture medium enriched with nutrients and minerals with O. ficus indica residuals as the unique carbon source, during eight-day span under continuous feeding of oxygen. A factorial design of experiments (DOE) for eight sets of factor values was selected for this study. The factors were: particle size, pH level, and process temperature. For each experiment, biomass, total reducing carbohydrates (TRC) and dissolved oxygen (DO) concentrations were measured every 24 h. At the end of each experiment, the percentage of delignification, and cellulose recovery was measured by Infrared (IR) spectroscopy. Up to 67% of delignification and 22% of cellulose recovery were obtained by the process. These results were analyzed by a factorial DOE in order to maximize each response individually and to optimize both responses together. The delignification of Opuntia ficus indica thorns has not been previously reported to our knowledge.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.