Reza A. Hejazi, E. Dastranj, Noora Habibi, A. Naderifard
{"title":"期权定价的随机分析和不变子空间方法的数值模拟","authors":"Reza A. Hejazi, E. Dastranj, Noora Habibi, A. Naderifard","doi":"10.22034/CMDE.2021.38468.1692","DOIUrl":null,"url":null,"abstract":" In this paper option pricing is given via stochastic analysis and invariant subspace method. Finally numerical solutions is driven and shown via diagram. The considered model is one of the most well known non-linear time series model in which the switching mechanism is controlled by an unobservable state variable that follows a first-order Markov chain. Some analytical solutions for option pricing are given under our considered model. Then numerical solutions are presented via finite difference method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic analysis and invariant subspace method for handling option pricing with numerical simulation\",\"authors\":\"Reza A. Hejazi, E. Dastranj, Noora Habibi, A. Naderifard\",\"doi\":\"10.22034/CMDE.2021.38468.1692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" In this paper option pricing is given via stochastic analysis and invariant subspace method. Finally numerical solutions is driven and shown via diagram. The considered model is one of the most well known non-linear time series model in which the switching mechanism is controlled by an unobservable state variable that follows a first-order Markov chain. Some analytical solutions for option pricing are given under our considered model. Then numerical solutions are presented via finite difference method.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.38468.1692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.38468.1692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stochastic analysis and invariant subspace method for handling option pricing with numerical simulation
In this paper option pricing is given via stochastic analysis and invariant subspace method. Finally numerical solutions is driven and shown via diagram. The considered model is one of the most well known non-linear time series model in which the switching mechanism is controlled by an unobservable state variable that follows a first-order Markov chain. Some analytical solutions for option pricing are given under our considered model. Then numerical solutions are presented via finite difference method.