期权定价的随机分析和不变子空间方法的数值模拟

IF 1.1 Q2 MATHEMATICS, APPLIED
Reza A. Hejazi, E. Dastranj, Noora Habibi, A. Naderifard
{"title":"期权定价的随机分析和不变子空间方法的数值模拟","authors":"Reza A. Hejazi, E. Dastranj, Noora Habibi, A. Naderifard","doi":"10.22034/CMDE.2021.38468.1692","DOIUrl":null,"url":null,"abstract":"‎ In this paper option pricing is given via stochastic analysis and invariant subspace method. Finally numerical solutions is driven and shown via diagram. The considered model is one of the most well known non-linear time series model in which the switching mechanism is controlled by an unobservable state variable that follows a first-order Markov chain. Some analytical solutions for option pricing are given under our considered model. Then numerical solutions are presented via finite difference method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic analysis and invariant subspace method for handling option pricing with numerical simulation\",\"authors\":\"Reza A. Hejazi, E. Dastranj, Noora Habibi, A. Naderifard\",\"doi\":\"10.22034/CMDE.2021.38468.1692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎ In this paper option pricing is given via stochastic analysis and invariant subspace method. Finally numerical solutions is driven and shown via diagram. The considered model is one of the most well known non-linear time series model in which the switching mechanism is controlled by an unobservable state variable that follows a first-order Markov chain. Some analytical solutions for option pricing are given under our considered model. Then numerical solutions are presented via finite difference method.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.38468.1692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.38468.1692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用随机分析和不变子空间方法给出了期权的定价。最后给出了数值解法,并用图形表示。所考虑的模型是最著名的非线性时间序列模型之一,其中切换机制由遵循一阶马尔可夫链的不可观测状态变量控制。在该模型下,给出了期权定价问题的一些解析解。然后用有限差分法给出了数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic analysis and invariant subspace method for handling option pricing with numerical simulation
‎ In this paper option pricing is given via stochastic analysis and invariant subspace method. Finally numerical solutions is driven and shown via diagram. The considered model is one of the most well known non-linear time series model in which the switching mechanism is controlled by an unobservable state variable that follows a first-order Markov chain. Some analytical solutions for option pricing are given under our considered model. Then numerical solutions are presented via finite difference method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信