{"title":"连续谱的加权积分Hankel算子","authors":"Emilio Fedele, A. Pushnitski","doi":"10.1515/conop-2017-0009","DOIUrl":null,"url":null,"abstract":"Abstract Using the Kato-Rosenblum theorem, we describe the absolutely continuous spectrum of a class of weighted integral Hankel operators in L2(ℝ+). These self-adjoint operators generalise the explicitly diagonalisable operator with the integral kernel sαtα(s + t)-1-2α, where α > -1/2. Our analysis can be considered as an extension of J. Howland’s 1992 paper which dealt with the unweighted case, corresponding to α = 0.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2017-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2017-0009","citationCount":"2","resultStr":"{\"title\":\"Weighted integral Hankel operators with continuous spectrum\",\"authors\":\"Emilio Fedele, A. Pushnitski\",\"doi\":\"10.1515/conop-2017-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using the Kato-Rosenblum theorem, we describe the absolutely continuous spectrum of a class of weighted integral Hankel operators in L2(ℝ+). These self-adjoint operators generalise the explicitly diagonalisable operator with the integral kernel sαtα(s + t)-1-2α, where α > -1/2. Our analysis can be considered as an extension of J. Howland’s 1992 paper which dealt with the unweighted case, corresponding to α = 0.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2017-0009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2017-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2017-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weighted integral Hankel operators with continuous spectrum
Abstract Using the Kato-Rosenblum theorem, we describe the absolutely continuous spectrum of a class of weighted integral Hankel operators in L2(ℝ+). These self-adjoint operators generalise the explicitly diagonalisable operator with the integral kernel sαtα(s + t)-1-2α, where α > -1/2. Our analysis can be considered as an extension of J. Howland’s 1992 paper which dealt with the unweighted case, corresponding to α = 0.