球面与八次几何乘积的并行化

IF 0.5 Q3 MATHEMATICS
M. Parton, P. Piccinni
{"title":"球面与八次几何乘积的并行化","authors":"M. Parton, P. Piccinni","doi":"10.1515/coma-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract A classical theoremof Kervaire states that products of spheres are parallelizable if and only if at least one of the factors has odd dimension. Two explicit parallelizations on Sm × S2h−1 seem to be quite natural, and have been previously studied by the first named author in [32]. The present paper is devoted to the three choices G = G2, Spin(7), Spin(9) of G-structures on Sm × S2h−1, respectively with m + 2h − 1 = 7, 8, 16 and related with octonionic geometry.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"138 - 149"},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0007","citationCount":"1","resultStr":"{\"title\":\"Parallelizations on products of spheres and octonionic geometry\",\"authors\":\"M. Parton, P. Piccinni\",\"doi\":\"10.1515/coma-2019-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A classical theoremof Kervaire states that products of spheres are parallelizable if and only if at least one of the factors has odd dimension. Two explicit parallelizations on Sm × S2h−1 seem to be quite natural, and have been previously studied by the first named author in [32]. The present paper is devoted to the three choices G = G2, Spin(7), Spin(9) of G-structures on Sm × S2h−1, respectively with m + 2h − 1 = 7, 8, 16 and related with octonionic geometry.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"6 1\",\"pages\":\"138 - 149\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2019-0007\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2019-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

一个经典的Kervaire定理指出,球的积当且仅当至少一个因子具有奇维数时是可并行的。Sm × S2h−1上的两个显式并行似乎是很自然的,并且在[32]中已经被第一作者研究过。本文讨论了Sm × S2h−1上G-结构在m + 2h−1 = 7,8,16时的三种选择G = G2, Spin(7), Spin(9)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelizations on products of spheres and octonionic geometry
Abstract A classical theoremof Kervaire states that products of spheres are parallelizable if and only if at least one of the factors has odd dimension. Two explicit parallelizations on Sm × S2h−1 seem to be quite natural, and have been previously studied by the first named author in [32]. The present paper is devoted to the three choices G = G2, Spin(7), Spin(9) of G-structures on Sm × S2h−1, respectively with m + 2h − 1 = 7, 8, 16 and related with octonionic geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信