Hyung-Ju Kim, K. Bae, Won-Young Song, Eunjung Yang, N. Myung
{"title":"非均匀角度样本搜索雷达的ISAR成像方法","authors":"Hyung-Ju Kim, K. Bae, Won-Young Song, Eunjung Yang, N. Myung","doi":"10.2528/pierm18011802","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-dimensional (2-D) inverse synthetic aperture radar (ISAR) imaging method with nonuniformly obtained angle samples. A one-dimensional (1-D) radar image, a range profile, is obtained using frequency samples within a given bandwidth. 2-D ISAR images are then obtained by acquiring the Doppler spectrum using range profiles obtained from multiple observation angles having a constant interval. However, when ISAR images are obtained by applying the rangeDoppler imaging method for a target scattered signal with nonuniform angle samples, a clear image cannot be obtained. In this paper, we propose a method to generate a covariance matrix from a nonuniform angle sample and obtain an ISAR image based on the multiple signal characterization (MUSIC) technique. The proposed method can be applied to the target scattering signal using a search radar, which observes target with nonuniform aspect angles. We present a scattering signal model of a target for the search radar and provide ISAR images obtained by applying the proposed method to simulated and measured data, respectively. Results reveal that the proposed method improves image quality and reduces computation time compared to the conventional method.","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/pierm18011802","citationCount":"0","resultStr":"{\"title\":\"An ISAR Imaging Method for Search Radar Involving Nonuniform Angle Samples\",\"authors\":\"Hyung-Ju Kim, K. Bae, Won-Young Song, Eunjung Yang, N. Myung\",\"doi\":\"10.2528/pierm18011802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a two-dimensional (2-D) inverse synthetic aperture radar (ISAR) imaging method with nonuniformly obtained angle samples. A one-dimensional (1-D) radar image, a range profile, is obtained using frequency samples within a given bandwidth. 2-D ISAR images are then obtained by acquiring the Doppler spectrum using range profiles obtained from multiple observation angles having a constant interval. However, when ISAR images are obtained by applying the rangeDoppler imaging method for a target scattered signal with nonuniform angle samples, a clear image cannot be obtained. In this paper, we propose a method to generate a covariance matrix from a nonuniform angle sample and obtain an ISAR image based on the multiple signal characterization (MUSIC) technique. The proposed method can be applied to the target scattering signal using a search radar, which observes target with nonuniform aspect angles. We present a scattering signal model of a target for the search radar and provide ISAR images obtained by applying the proposed method to simulated and measured data, respectively. Results reveal that the proposed method improves image quality and reduces computation time compared to the conventional method.\",\"PeriodicalId\":39028,\"journal\":{\"name\":\"Progress in Electromagnetics Research M\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2528/pierm18011802\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research M\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pierm18011802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research M","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pierm18011802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An ISAR Imaging Method for Search Radar Involving Nonuniform Angle Samples
This paper proposes a two-dimensional (2-D) inverse synthetic aperture radar (ISAR) imaging method with nonuniformly obtained angle samples. A one-dimensional (1-D) radar image, a range profile, is obtained using frequency samples within a given bandwidth. 2-D ISAR images are then obtained by acquiring the Doppler spectrum using range profiles obtained from multiple observation angles having a constant interval. However, when ISAR images are obtained by applying the rangeDoppler imaging method for a target scattered signal with nonuniform angle samples, a clear image cannot be obtained. In this paper, we propose a method to generate a covariance matrix from a nonuniform angle sample and obtain an ISAR image based on the multiple signal characterization (MUSIC) technique. The proposed method can be applied to the target scattering signal using a search radar, which observes target with nonuniform aspect angles. We present a scattering signal model of a target for the search radar and provide ISAR images obtained by applying the proposed method to simulated and measured data, respectively. Results reveal that the proposed method improves image quality and reduces computation time compared to the conventional method.
期刊介绍:
Progress In Electromagnetics Research (PIER) M publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. Especially, PIER M publishes papers on method of electromagnetics, and other topics on electromagnetic theory. It is an open access, on-line journal in 2008, and freely accessible to all readers via the Internet. Manuscripts submitted to PIER M must not have been submitted simultaneously to other journals.