阴离子水性聚氨酯硅醇分散体用棉籽油制备的可电离多元醇

Q2 Materials Science
Sashivinay Kumar Gaddam, A. Palanisamy
{"title":"阴离子水性聚氨酯硅醇分散体用棉籽油制备的可电离多元醇","authors":"Sashivinay Kumar Gaddam, A. Palanisamy","doi":"10.1177/2041247920952644","DOIUrl":null,"url":null,"abstract":"A novel cottonseed oil-based ionizable polyol was introduced as ionic soft segment in waterborne polyurethane dispersion (PUD) synthesis. The ionizable polyol was synthesized by ring opening of epoxidized cottonseed oil (ECSO) with 4-aminobenzoic acid (PABA) and blended with hydroxylated cottonseed oil polyol (HCSO) in different weight ratios to develop a series of mixed polyols having different hydroxyl numbers viz., 146, 130 and 114 mg KOH/g. Three different PUDs were synthesized using the mixed polyols, isophorone diisocyanate, and 3-aminopropyltriethoxysilane. The chemical structure, thermo-mechanical properties, and surface properties of cured PUD films were examined using Fourier-transform infrared spectroscopy (FTIR), Dynamic mechanical thermal analysis (DMTA), universal testing machine (UTM) and contact angle measurements respectively. The effect of Si–O–Si cross-linking network density, which increases with an increase in OH values of the mixed polyol was also investigated. All the PUDs prepared in this study exhibited good storage stability (>4 months), and the average particle sizes of PUDs ranged from 18 to 124 nm. The highest hydroxyl mixed polyol derived PUD film (PUD-35 film) exhibited high thermal stability, mechanical strength; Tg value, water contact angle value, chemical, and abrasion resistance properties due to the extended siloxane cross-link network structure. The introduction of ionizable polyol into the soft segment led to an improvement in hard and soft segment phase mixing of PUDs, and this strategy could enrich the exploration of new synthetic methodologies in the field of bio-based PUD manufacturing.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2041247920952644","citationCount":"7","resultStr":"{\"title\":\"Ionizable polyol from cottonseed oil for anionic waterborne polyurethane-silanol dispersions\",\"authors\":\"Sashivinay Kumar Gaddam, A. Palanisamy\",\"doi\":\"10.1177/2041247920952644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel cottonseed oil-based ionizable polyol was introduced as ionic soft segment in waterborne polyurethane dispersion (PUD) synthesis. The ionizable polyol was synthesized by ring opening of epoxidized cottonseed oil (ECSO) with 4-aminobenzoic acid (PABA) and blended with hydroxylated cottonseed oil polyol (HCSO) in different weight ratios to develop a series of mixed polyols having different hydroxyl numbers viz., 146, 130 and 114 mg KOH/g. Three different PUDs were synthesized using the mixed polyols, isophorone diisocyanate, and 3-aminopropyltriethoxysilane. The chemical structure, thermo-mechanical properties, and surface properties of cured PUD films were examined using Fourier-transform infrared spectroscopy (FTIR), Dynamic mechanical thermal analysis (DMTA), universal testing machine (UTM) and contact angle measurements respectively. The effect of Si–O–Si cross-linking network density, which increases with an increase in OH values of the mixed polyol was also investigated. All the PUDs prepared in this study exhibited good storage stability (>4 months), and the average particle sizes of PUDs ranged from 18 to 124 nm. The highest hydroxyl mixed polyol derived PUD film (PUD-35 film) exhibited high thermal stability, mechanical strength; Tg value, water contact angle value, chemical, and abrasion resistance properties due to the extended siloxane cross-link network structure. The introduction of ionizable polyol into the soft segment led to an improvement in hard and soft segment phase mixing of PUDs, and this strategy could enrich the exploration of new synthetic methodologies in the field of bio-based PUD manufacturing.\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2041247920952644\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2041247920952644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2041247920952644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 7

摘要

介绍了一种新型的棉籽油基可电离多元醇作为离子软段用于水性聚氨酯分散体(PUD)合成。将环氧化棉籽油(ECSO)与4-氨基苯甲酸(PABA)开环合成可电离多元醇,并与羟基化棉籽油多元醇(HCSO)按不同质量比共混,得到羟基数分别为146、130和114 mg KOH/g的混合多元醇。以混合多元醇、异佛尔酮二异氰酸酯和3-氨基丙基三乙氧基硅烷为原料合成了三种不同的聚羧酸酯。采用傅里叶变换红外光谱(FTIR)、动态机械热分析(DMTA)、万能试验机(UTM)和接触角测试分别对固化后的PUD薄膜的化学结构、热力学性能和表面性能进行了检测。考察了Si-O-Si交联网络密度随混合多元醇OH值的增加而增大的影响。本研究制备的pud具有良好的储存稳定性(4个月),平均粒径在18 ~ 124 nm之间。羟基最高的混合多元醇衍生PUD膜(PUD-35膜)表现出较高的热稳定性、机械强度;Tg值,水接触角值,化学,和耐磨性由于扩展硅氧烷交联网络结构。在软段中引入可电离多元醇可以改善聚乳酸的软硬段相混合,这一策略可以丰富生物基聚乳酸制造领域新合成方法的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ionizable polyol from cottonseed oil for anionic waterborne polyurethane-silanol dispersions
A novel cottonseed oil-based ionizable polyol was introduced as ionic soft segment in waterborne polyurethane dispersion (PUD) synthesis. The ionizable polyol was synthesized by ring opening of epoxidized cottonseed oil (ECSO) with 4-aminobenzoic acid (PABA) and blended with hydroxylated cottonseed oil polyol (HCSO) in different weight ratios to develop a series of mixed polyols having different hydroxyl numbers viz., 146, 130 and 114 mg KOH/g. Three different PUDs were synthesized using the mixed polyols, isophorone diisocyanate, and 3-aminopropyltriethoxysilane. The chemical structure, thermo-mechanical properties, and surface properties of cured PUD films were examined using Fourier-transform infrared spectroscopy (FTIR), Dynamic mechanical thermal analysis (DMTA), universal testing machine (UTM) and contact angle measurements respectively. The effect of Si–O–Si cross-linking network density, which increases with an increase in OH values of the mixed polyol was also investigated. All the PUDs prepared in this study exhibited good storage stability (>4 months), and the average particle sizes of PUDs ranged from 18 to 124 nm. The highest hydroxyl mixed polyol derived PUD film (PUD-35 film) exhibited high thermal stability, mechanical strength; Tg value, water contact angle value, chemical, and abrasion resistance properties due to the extended siloxane cross-link network structure. The introduction of ionizable polyol into the soft segment led to an improvement in hard and soft segment phase mixing of PUDs, and this strategy could enrich the exploration of new synthetic methodologies in the field of bio-based PUD manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers from Renewable Resources
Polymers from Renewable Resources Materials Science-Polymers and Plastics
CiteScore
3.50
自引率
0.00%
发文量
15
期刊介绍: Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信