玻璃渣增强6061-T6铝合金搅拌摩擦焊接接头硬度预测

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
T. Abioye, Ebenezer Olanipekun, A. S. Anasyida
{"title":"玻璃渣增强6061-T6铝合金搅拌摩擦焊接接头硬度预测","authors":"T. Abioye, Ebenezer Olanipekun, A. S. Anasyida","doi":"10.4028/p-j02z6p","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to investigate the friction stir weld quality of pulverized glass waste (PGW)-reinforced AA6061-T6 and develop a model predicting the hardness of the joint. Friction stir welding of PGW-reinforced AA6061-T6 was done within a process window. The process was optimized for the maximum joint hardness. Thereafter, the result of the hardness was used to develop a model using a novel statistical analytical technique. The addition of PGW enhanced the AA6061-T6 friction stir welded joint hardness. The maximum hardness (112 HV) of the PGW-reinforced joint, which was obtained at optimal setting of 900 rpm rotational speed, 40 mm/min traverse speed and 1o tilt angle, is by a factor of 1.72 greater than the unreinforced joint and close to the hardness of the as-received AA6061-T6 (120 HV). The developed model can predict the hardness of the PGW-reinforced AA6061-T6 joint up to an accuracy of 89%. The model shows that the rotational speed, tilt angle and their interaction contributed significantly to the hardness of the PGW-reinforced AA6061-T6 friction stir welded joint. This model is suitable for determining the hardness property of particle-reinforced AA6061-T6 friction stir welded joint at varying processing parameters.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":"62 1","pages":"31 - 42"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the Hardness of Pulverized Glass Waste-Reinforced Aluminium Alloy 6061-T6 Friction Stir Welded Joint\",\"authors\":\"T. Abioye, Ebenezer Olanipekun, A. S. Anasyida\",\"doi\":\"10.4028/p-j02z6p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to investigate the friction stir weld quality of pulverized glass waste (PGW)-reinforced AA6061-T6 and develop a model predicting the hardness of the joint. Friction stir welding of PGW-reinforced AA6061-T6 was done within a process window. The process was optimized for the maximum joint hardness. Thereafter, the result of the hardness was used to develop a model using a novel statistical analytical technique. The addition of PGW enhanced the AA6061-T6 friction stir welded joint hardness. The maximum hardness (112 HV) of the PGW-reinforced joint, which was obtained at optimal setting of 900 rpm rotational speed, 40 mm/min traverse speed and 1o tilt angle, is by a factor of 1.72 greater than the unreinforced joint and close to the hardness of the as-received AA6061-T6 (120 HV). The developed model can predict the hardness of the PGW-reinforced AA6061-T6 joint up to an accuracy of 89%. The model shows that the rotational speed, tilt angle and their interaction contributed significantly to the hardness of the PGW-reinforced AA6061-T6 friction stir welded joint. This model is suitable for determining the hardness property of particle-reinforced AA6061-T6 friction stir welded joint at varying processing parameters.\",\"PeriodicalId\":45925,\"journal\":{\"name\":\"International Journal of Engineering Research in Africa\",\"volume\":\"62 1\",\"pages\":\"31 - 42\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-j02z6p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-j02z6p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了玻璃渣粉(PGW)增强AA6061-T6的搅拌摩擦焊接质量,并建立了预测接头硬度的模型。在一个工艺窗口内对pgw增强AA6061-T6进行了搅拌摩擦焊接。对该工艺进行了优化,以获得最大的接头硬度。然后,使用一种新的统计分析技术将硬度结果用于建立模型。PGW的加入提高了AA6061-T6搅拌摩擦焊接接头的硬度。在900 rpm转速、40 mm/min横移速度和10个倾角的最佳设置下,pgw增强接头的最大硬度为112 HV,是未增强接头硬度的1.72倍,接近实际硬度AA6061-T6 (120 HV)。该模型对pgw增强AA6061-T6接头的硬度预测精度可达89%。模型表明,转速、倾角及其相互作用对pgw增强AA6061-T6搅拌摩擦焊接接头的硬度有显著影响。该模型适用于测定颗粒增强AA6061-T6搅拌摩擦焊接接头在不同工艺参数下的硬度特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the Hardness of Pulverized Glass Waste-Reinforced Aluminium Alloy 6061-T6 Friction Stir Welded Joint
The purpose of this study is to investigate the friction stir weld quality of pulverized glass waste (PGW)-reinforced AA6061-T6 and develop a model predicting the hardness of the joint. Friction stir welding of PGW-reinforced AA6061-T6 was done within a process window. The process was optimized for the maximum joint hardness. Thereafter, the result of the hardness was used to develop a model using a novel statistical analytical technique. The addition of PGW enhanced the AA6061-T6 friction stir welded joint hardness. The maximum hardness (112 HV) of the PGW-reinforced joint, which was obtained at optimal setting of 900 rpm rotational speed, 40 mm/min traverse speed and 1o tilt angle, is by a factor of 1.72 greater than the unreinforced joint and close to the hardness of the as-received AA6061-T6 (120 HV). The developed model can predict the hardness of the PGW-reinforced AA6061-T6 joint up to an accuracy of 89%. The model shows that the rotational speed, tilt angle and their interaction contributed significantly to the hardness of the PGW-reinforced AA6061-T6 friction stir welded joint. This model is suitable for determining the hardness property of particle-reinforced AA6061-T6 friction stir welded joint at varying processing parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
14.30%
发文量
62
期刊介绍: "International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信