{"title":"具有简单各向同性群的紧致测地线轨道空间","authors":"Z. Chen, Y. Nikolayevsky, Yu Nikonorov","doi":"10.1007/s10455-022-09877-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(M=G/H\\)</span> be a compact, simply connected, Riemannian homogeneous space, where <i>G</i> is (almost) effective and <i>H</i> is a <i>simple</i> Lie group. In this paper, we first classify all <i>G</i>-naturally reductive metrics on <i>M</i>, and then all <i>G</i>-geodesic orbit metrics on <i>M</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-022-09877-7.pdf","citationCount":"6","resultStr":"{\"title\":\"Compact geodesic orbit spaces with a simple isotropy group\",\"authors\":\"Z. Chen, Y. Nikolayevsky, Yu Nikonorov\",\"doi\":\"10.1007/s10455-022-09877-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(M=G/H\\\\)</span> be a compact, simply connected, Riemannian homogeneous space, where <i>G</i> is (almost) effective and <i>H</i> is a <i>simple</i> Lie group. In this paper, we first classify all <i>G</i>-naturally reductive metrics on <i>M</i>, and then all <i>G</i>-geodesic orbit metrics on <i>M</i>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-022-09877-7.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-022-09877-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09877-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact geodesic orbit spaces with a simple isotropy group
Let \(M=G/H\) be a compact, simply connected, Riemannian homogeneous space, where G is (almost) effective and H is a simple Lie group. In this paper, we first classify all G-naturally reductive metrics on M, and then all G-geodesic orbit metrics on M.