{"title":"柯西积的收敛性","authors":"Adam Krupowies, F. Prus-Wiśniowski","doi":"10.1080/00029890.2023.2206328","DOIUrl":null,"url":null,"abstract":"Abstract In general, the Cauchy product of an absolutely convergent series and a conditionally convergent one might converge absolutely. In our note, we provide an easy and quite general method for construction of such pairs of series, a method that is not related to the classic Pringsheim’s example. Moreover, we observe that when only pairs of alternating series, both satisfying the assumptions of the alternating series test are considered, if one of them is absolutely convergent then the character of convergence of their Cauchy product is exactly the same as the character of convergence of the second factor. We complete the remarks with a new and surprisingly short proof of the Voss Theorem on Cauchy products.","PeriodicalId":7761,"journal":{"name":"American Mathematical Monthly","volume":"130 1","pages":"671 - 677"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Character of Convergence of the Cauchy Product\",\"authors\":\"Adam Krupowies, F. Prus-Wiśniowski\",\"doi\":\"10.1080/00029890.2023.2206328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In general, the Cauchy product of an absolutely convergent series and a conditionally convergent one might converge absolutely. In our note, we provide an easy and quite general method for construction of such pairs of series, a method that is not related to the classic Pringsheim’s example. Moreover, we observe that when only pairs of alternating series, both satisfying the assumptions of the alternating series test are considered, if one of them is absolutely convergent then the character of convergence of their Cauchy product is exactly the same as the character of convergence of the second factor. We complete the remarks with a new and surprisingly short proof of the Voss Theorem on Cauchy products.\",\"PeriodicalId\":7761,\"journal\":{\"name\":\"American Mathematical Monthly\",\"volume\":\"130 1\",\"pages\":\"671 - 677\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Mathematical Monthly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00029890.2023.2206328\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mathematical Monthly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2206328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Character of Convergence of the Cauchy Product
Abstract In general, the Cauchy product of an absolutely convergent series and a conditionally convergent one might converge absolutely. In our note, we provide an easy and quite general method for construction of such pairs of series, a method that is not related to the classic Pringsheim’s example. Moreover, we observe that when only pairs of alternating series, both satisfying the assumptions of the alternating series test are considered, if one of them is absolutely convergent then the character of convergence of their Cauchy product is exactly the same as the character of convergence of the second factor. We complete the remarks with a new and surprisingly short proof of the Voss Theorem on Cauchy products.
期刊介绍:
The Monthly''s readers expect a high standard of exposition; they look for articles that inform, stimulate, challenge, enlighten, and even entertain. Monthly articles are meant to be read, enjoyed, and discussed, rather than just archived. Articles may be expositions of old or new results, historical or biographical essays, speculations or definitive treatments, broad developments, or explorations of a single application. Novelty and generality are far less important than clarity of exposition and broad appeal. Appropriate figures, diagrams, and photographs are encouraged.
Notes are short, sharply focused, and possibly informal. They are often gems that provide a new proof of an old theorem, a novel presentation of a familiar theme, or a lively discussion of a single issue.
Abstracts for articles or notes should entice the prospective reader into exploring the subject of the paper and should make it clear to the reader why this paper is interesting and important. The abstract should highlight the concepts of the paper rather than summarize the mechanics. The abstract is the first impression of the paper, not a technical summary of the paper. Excessive use of notation is discouraged as it can limit the interest of the broad readership of the MAA, and can limit search-ability of the article.