普通捆绑包在特殊的简单小分辨率集上

IF 0.5 4区 数学 Q3 MATHEMATICS
Rong Du, X. Fang
{"title":"普通捆绑包在特殊的简单小分辨率集上","authors":"Rong Du, X. Fang","doi":"10.4310/ajm.2021.v25.n2.a7","DOIUrl":null,"url":null,"abstract":"We study the normal bundles of the exceptional sets of isolated simple small singularities in the higher dimension when the Picard group of the exceptional set is $\\mathbb{Z}$ and the normal bundle of it has some good filtration. In particular, for the exceptional set is a projective space with the split normal bundle, we generalized Nakayama and Ando's results to higher dimension. Moreover, we also generalize Laufer's results of rationality and embedding dimension to higher dimension.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal bundles on the exceptional sets of simple small resolutions\",\"authors\":\"Rong Du, X. Fang\",\"doi\":\"10.4310/ajm.2021.v25.n2.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the normal bundles of the exceptional sets of isolated simple small singularities in the higher dimension when the Picard group of the exceptional set is $\\\\mathbb{Z}$ and the normal bundle of it has some good filtration. In particular, for the exceptional set is a projective space with the split normal bundle, we generalized Nakayama and Ando's results to higher dimension. Moreover, we also generalize Laufer's results of rationality and embedding dimension to higher dimension.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n2.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n2.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了高维孤立简单小奇点的例外集的正规束,当例外集的Picard群为$\mathbb{Z}$时,其正规束具有良好的滤过性。特别地,我们将Nakayama和Ando的结果推广到高维,对于例外集是一个具有分裂法向束的投影空间。此外,我们还将Laufer的合理性和嵌入维数的结果推广到更高的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal bundles on the exceptional sets of simple small resolutions
We study the normal bundles of the exceptional sets of isolated simple small singularities in the higher dimension when the Picard group of the exceptional set is $\mathbb{Z}$ and the normal bundle of it has some good filtration. In particular, for the exceptional set is a projective space with the split normal bundle, we generalized Nakayama and Ando's results to higher dimension. Moreover, we also generalize Laufer's results of rationality and embedding dimension to higher dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信