用复杂的缺失数据模式平滑时空数据

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eleonora Arnone, L. Sangalli, A. Vicini
{"title":"用复杂的缺失数据模式平滑时空数据","authors":"Eleonora Arnone, L. Sangalli, A. Vicini","doi":"10.1177/1471082X211057959","DOIUrl":null,"url":null,"abstract":"We consider spatio-temporal data and functional data with spatial dependence, characterized by complicated missing data patterns. We propose a new method capable to efficiently handle these data structures, including the case where data are missing over large portions of the spatio-temporal domain. The method is based on regression with partial differential equation regularization. The proposed model can accurately deal with data scattered over domains with irregular shapes and can accurately estimate fields exhibiting complicated local features. We demonstrate the consistency and asymptotic normality of the estimators. Moreover, we illustrate the good performances of the method in simulations studies, considering different missing data scenarios, from sparse data to more challenging scenarios where the data are missing over large portions of the spatial and temporal domains and the missing data are clustered in space and/or in time. The proposed method is compared to competing techniques, considering predictive accuracy and uncertainty quantification measures. Finally, we show an application to the analysis of lake surface water temperature data, that further illustrates the ability of the method to handle data featuring complicated patterns of missingness and highlights its potentiality for environmental studies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smoothing spatio-temporal data with complex missing data patterns\",\"authors\":\"Eleonora Arnone, L. Sangalli, A. Vicini\",\"doi\":\"10.1177/1471082X211057959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider spatio-temporal data and functional data with spatial dependence, characterized by complicated missing data patterns. We propose a new method capable to efficiently handle these data structures, including the case where data are missing over large portions of the spatio-temporal domain. The method is based on regression with partial differential equation regularization. The proposed model can accurately deal with data scattered over domains with irregular shapes and can accurately estimate fields exhibiting complicated local features. We demonstrate the consistency and asymptotic normality of the estimators. Moreover, we illustrate the good performances of the method in simulations studies, considering different missing data scenarios, from sparse data to more challenging scenarios where the data are missing over large portions of the spatial and temporal domains and the missing data are clustered in space and/or in time. The proposed method is compared to competing techniques, considering predictive accuracy and uncertainty quantification measures. Finally, we show an application to the analysis of lake surface water temperature data, that further illustrates the ability of the method to handle data featuring complicated patterns of missingness and highlights its potentiality for environmental studies.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X211057959\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211057959","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑具有空间依赖性的时空数据和功能数据,其特征是复杂的缺失数据模式。我们提出了一种能够有效处理这些数据结构的新方法,包括数据在时空域的大部分区域丢失的情况。该方法基于偏微分方程正则化的回归。所提出的模型可以准确地处理分散在具有不规则形状的域上的数据,并且可以准确地估计表现出复杂局部特征的场。我们证明了估计量的一致性和渐近正态性。此外,我们在模拟研究中说明了该方法的良好性能,考虑到不同的缺失数据场景,从稀疏数据到更具挑战性的场景,在这些场景中,数据在很大一部分空间和时间域上缺失,并且缺失的数据在空间和/或时间上聚集。考虑到预测准确性和不确定性量化措施,将所提出的方法与竞争技术进行了比较。最后,我们展示了该方法在湖面水温数据分析中的应用,进一步说明了该方法处理具有复杂缺失模式的数据的能力,并突出了其在环境研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing spatio-temporal data with complex missing data patterns
We consider spatio-temporal data and functional data with spatial dependence, characterized by complicated missing data patterns. We propose a new method capable to efficiently handle these data structures, including the case where data are missing over large portions of the spatio-temporal domain. The method is based on regression with partial differential equation regularization. The proposed model can accurately deal with data scattered over domains with irregular shapes and can accurately estimate fields exhibiting complicated local features. We demonstrate the consistency and asymptotic normality of the estimators. Moreover, we illustrate the good performances of the method in simulations studies, considering different missing data scenarios, from sparse data to more challenging scenarios where the data are missing over large portions of the spatial and temporal domains and the missing data are clustered in space and/or in time. The proposed method is compared to competing techniques, considering predictive accuracy and uncertainty quantification measures. Finally, we show an application to the analysis of lake surface water temperature data, that further illustrates the ability of the method to handle data featuring complicated patterns of missingness and highlights its potentiality for environmental studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信