{"title":"直径为3的Hamming图的无线电数","authors":"Jason DeVito, Amanda Niedzialomski, J. Warren","doi":"10.20429/tag.2022.090210","DOIUrl":null,"url":null,"abstract":"For $G$ a simple, connected graph, a vertex labeling $f:V(G)\\rightarrow \\mathbb{Z}_+$ is called a $\\textit{radio labeling of}$ $G$ if it satisfies $|f(u)-f(v)|\\geq \\operatorname{diam}(G) + 1 - d(u,v)$ for all distinct vertices $u,v\\in V(G)$. The $\\textit{radio number}$ of $G$ is the minimal span over all radio labelings of $G$. If a bijective radio labeling onto $\\{1,2,...,|V(G)|\\}$ exists, $G$ is called a $\\textit{radio graceful graph}$. We determine the radio number of all diameter $3$ Hamming graphs and show that an infinite subset of them is radio graceful.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio Number of Hamming Graphs of Diameter 3\",\"authors\":\"Jason DeVito, Amanda Niedzialomski, J. Warren\",\"doi\":\"10.20429/tag.2022.090210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For $G$ a simple, connected graph, a vertex labeling $f:V(G)\\\\rightarrow \\\\mathbb{Z}_+$ is called a $\\\\textit{radio labeling of}$ $G$ if it satisfies $|f(u)-f(v)|\\\\geq \\\\operatorname{diam}(G) + 1 - d(u,v)$ for all distinct vertices $u,v\\\\in V(G)$. The $\\\\textit{radio number}$ of $G$ is the minimal span over all radio labelings of $G$. If a bijective radio labeling onto $\\\\{1,2,...,|V(G)|\\\\}$ exists, $G$ is called a $\\\\textit{radio graceful graph}$. We determine the radio number of all diameter $3$ Hamming graphs and show that an infinite subset of them is radio graceful.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2022.090210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2022.090210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
For $G$ a simple, connected graph, a vertex labeling $f:V(G)\rightarrow \mathbb{Z}_+$ is called a $\textit{radio labeling of}$ $G$ if it satisfies $|f(u)-f(v)|\geq \operatorname{diam}(G) + 1 - d(u,v)$ for all distinct vertices $u,v\in V(G)$. The $\textit{radio number}$ of $G$ is the minimal span over all radio labelings of $G$. If a bijective radio labeling onto $\{1,2,...,|V(G)|\}$ exists, $G$ is called a $\textit{radio graceful graph}$. We determine the radio number of all diameter $3$ Hamming graphs and show that an infinite subset of them is radio graceful.